Invariant theory has its roots in groups acting on algebraic varieties, where the goal is to describe the polynomial functions that are fixed by the group action. A classic question in the study of group actions is whether the invariant ring is finitely generated, and if so, can we find a nice description for a minimal set of generators. Actions, however, are not limited to group actions, and in this talk, we will show under which circumstances a Hopf Algebra, namely a Taft Algebra, can act on the path algebra of a quiver, extending the work of Kinser and Walton published in 2016. Furthermore, given an action where the group-like element $g \in T(n)$ acts transitively on Q_0, we provide a description of the invariant ring of the action. (Received September 13, 2020)