1163-17-1134Lilit Martirosyan* (martirosyanl@uncw.edu), Department of Mathematics and Statistics,
Osprey Hall 2007G, 601 South College Road, Wilmington, NC 28403-5970. Braid rigidity for path
algebras.

Path algebras are a convenient way of describing decompositions of tensor powers of an object in a tensor category. If the category is braided, one obtains representations of the braid groups B_n for all $n \in \mathbb{N}$. We say that such representations are rigid if they are determined by the path algebra and the representations of B_2 . We show that besides the known classical cases also the braid representations for the path algebra for the 7-dimensional representation of G_2 satisfies the rigidity condition, provided B_3 generates $\operatorname{End}(\mathbb{V}^{\otimes 3})$. We obtain a complete classification of ribbon tensor categories with the fusion rules of $\mathfrak{g}(G_2)$ if this condition is satisfied. (Received September 14, 2020)