1163-18-1364 **Dmitri Nikshych*** (dmitri.nikshych@unh.edu), Department of Mathematics and Statistics, University of New Hampshire, Durham, NH 03824. On minimal extensions of symmetric fusion categories. Preliminary report.

A minimal extension of a symmetric fusion category \mathcal{E} is a non-degenerate braided fusion category \mathcal{C} such that dim $(\mathcal{C}) = \dim(\mathcal{E})^2$ together with an embedding $\mathcal{E} \hookrightarrow \mathcal{C}$. Lan, Kong, and Wen observed that minimal extensions of \mathcal{E} form a group $\operatorname{Mext}(\mathcal{E})$. Minimal extensions of Tannakian categories are well understood. Namely, for a finite group G, one has $\operatorname{Mext}(\operatorname{Rep}(G)) = H^3(G, \mathbb{C}^{\times})$ and minimal extensions are the twisted group doubles $\operatorname{Rep}(D^{\omega}(G))$. An interesting open problem is to compute $\operatorname{Mext}(\mathcal{E})$ for a super-Tannakian category \mathcal{E} . In this talk, I will explain how one can use the theory of graded braided extensions to compute this group for a pointed super-Tannakian \mathcal{E} . This is based on joint work with Alexei Davydov. (Received September 15, 2020)