Sophie Frisch* (frisch@math.tugraz.at), Institut für Analysis und Zahlentheorie, Technische Universität Graz, Kopernikusgasse 24, 8010 Graz, Austria. The stable rank of the ring of integer-valued polynomials. Preliminary report.
The stable rank of a ring R, denoted by s.r. (R), is an important invariant in algebraic K-theory with the property that, when s.r. $(R)=n$, then every invertible matrix over R can be reduced to an $n \times n$ matrix by elementary row and column operations. For commutative R, s.r. $(R)-1$ compares to $\operatorname{dim}(R)$, the Krull dimension. In fact, for commutative Noetherian R, s.r. $(R)-1 \leq \operatorname{dim}(R)$.

The ring of integer-valued polynomials $\operatorname{Int}(\mathbb{Z})$, a non-Noetherian 2-dimensional Prüfer domain, consists of those polynomials in $\mathbb{Q}[x]$ that map every integer to an integer:

$$
\operatorname{Int}(\mathbb{Z})=\{f \in \mathbb{Q}[x] \mid f(\mathbb{Z}) \subseteq \mathbb{Z}\}
$$

Now $\operatorname{Int}(\mathbb{Z})$, lying between $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$, behaves like a polynomial ring over a field in some respects (interpolation, for instance, and Nullstellensatz properties), and like $\mathbb{Z}[x]$ in others (for instance, Krull dimension).

We show that, with respect to the stable rank, $\operatorname{Int}(\mathbb{Z})$ behaves like $\mathbb{Q}[x]$, namely, s.r. $(\operatorname{Int}(\mathbb{Z}))=2$. (Received September 12, 2020)

