1163-28-1611**Timothy I Myers*** (timyers@howard.edu), 110 Camrose Avenue, Baltimore, MD 21225. A
Constructive Definition of the Fourier Transform on a Separable Banach Space.

Gill and Myers proved that every separable Banach space, denoted \mathcal{B} , has an isomorphic, isometric embedding in $\mathbb{R}^{\infty} = \mathbb{R} \times \mathbb{R} \times \cdots$. They used this result and a method due to Yamasaki to construct a sigma-finite Lebesgue measure $\lambda_{\mathcal{B}}$ for \mathcal{B} and defined the associated integral $\int_{\mathcal{B}} \cdot d\lambda_{\mathcal{B}}$ in a way that equals a limit of finite-dimensional Lebesgue integrals.

The objective of this talk is to apply this theory to developing a constructive definition of the Fourier transform on $L^1[\mathcal{B}]$. Our approach is constructive in the sense that this Fourier transform is defined as an integral on \mathcal{B} , which, by the aforementioned definition, equals a limit of Lebesgue integrals on Euclidean space as the dimension $n \to \infty$. Thus with this theory we may evaluate infinite-dimensional quantities, such as the Fourier transform on \mathcal{B} , by means of finite-dimensional approximation. (Received September 15, 2020)