Given a Banach space of holomorphic functions X on a domain Ω, a dominating set E is a subset of Ω which allows to recover any arbitrary function of X from its values on E with norm control. In view of the applications, the space which had attracted the most interest in the past was the Paley-Wiener space for which it was shown that relatively dense sets are dominating. Relative density turns out to characterize domination also in other prominent spaces like for instance Fock and Bergman spaces.

A natural question is to establish a link between the density of E and the norm estimates. Indeed, this is important in applications when one has to decide on the trade-off between the cost of the sampling and the accuracy of the estimates. In the early 2000’s Kovrijkine gave precise and optimal estimates for the Paley-Wiener space. His method, involving Bernstein inequalities, was exploited later on in different other spaces like for instance model spaces.

In this talk I will present estimates for sampling constants in Bergman spaces. The proof is in the spirit of Kovrijkine’s, but does not require Bernstein inequalities simplifying thereby the method. Another ingredient are Remez type inequalities by Andrievskii-Ruscheweyh on planar domains. (Received September 08, 2020)