1163-35-459 Tadele Mengesha^{*} (mengesha^Qutk.edu), Then University of Tennessee, Knoxville.

Calderon-Zygmund type estimates for nonlocal PDE with Holder continuous kernel.

In this talk I will present a result on L^p -regularity of weak solutions to linear nonlocal equation. To be precise, we study solutions of $\mathcal{L}_{K}^{s}u = f$ where the nonlocal operator is given by $\mathcal{L}_{K}^{s}u(x) = -\int_{\mathbb{R}^{n}} K(x,y) \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy$. We prove that for $s \in (0, 1)$, $t \in [s, 2s]$, $p \in [2, \infty)$, K an elliptic, symmetric, and $K(\cdot, y)$ is uniformly Hölder continuous, the solution u belongs to $H_{loc}^{2s-t,p}(\Omega)$ as long as 2s - t < 1 and $f \in \left\{H_{loc}^{t,p'}(\mathbb{R}^{d})\right\}^{*}$. The increase in differentiability and integrability is independent of the Hölder coefficient of K. For example, in the event that $f \in L_{loc}^{p}$, we can deduce that the solution $u \in H_{loc}^{2s-\delta,p}$ for any $\delta \in (0, s]$ as long as $2s - \delta < 1$. The proof uses a perturbation argument where regularity of solutions of a simpler equation is systematically used to obtained a desired estimate.

This is a joint work with Armin Schikorra and Sasikarn Yeepo at University of Pittsburgh. (Received September 07, 2020)