We propose, for the sake of dialogue, that the following system of difference equations serve as a phenomenological model of bipolar disorder, a psychiatric illness characterized by cycles or recurrent episodes of severe disturbances in mood (i.e., in being happy or sad, emotions at opposite poles of the spectrum):

\[
\begin{align*}
 x_{n+1} &= (ax_n + b) \mod m, \\
 z_{n+1} &= \begin{cases}
 -\frac{z_n - z_{n-1}}{2}, & \text{if } z_n + z_{n-1} \text{ is even,} \\
 -z_n - z_{n-1}, & \text{if } z_n + z_{n-1} \text{ is odd} \\
 \end{cases} + s\delta(x_n),
\end{align*}
\]

and

\[
\delta(x) = \begin{cases}
 0, & \text{if } x \neq d \in \{0, 1, \ldots, m - 1\}, \\
 1, & \text{if } x = d.
\end{cases}
\]

The first equation in the system is a \textit{linear congruential sequence}; and the second equation is a modified version of one of the sixteen mostly eventually periodic \textit{Collatz difference equations}. We observe (and conjecture) that every solution \(\{z_n\}_{n=0}^{\infty}\) of the system above is also eventually periodic. Thus, a solution \(\{z_n\}_{n=0}^{\infty}\) of the system is intended to represent the recurrent episodes of mood disturbance seen in an individual with bipolar disorder. (Received September 09, 2020)