1163-41-1191 Xin Li* (xin.li@ucf.edu). A weighted max-min-max problem on the unit circle.
For $n=1,2,3, \ldots$, let $\left\{t_{j}\right\}$ be a set of n points such that

$$
\begin{equation*}
0 \leq t_{1}<t_{2}<\cdots<t_{n}<2 \pi . \tag{1}
\end{equation*}
$$

A related extremal problem is to find

$$
\begin{equation*}
m_{n}:=\max _{\left\{t_{j}\right\}} \min _{1 \leq j \leq n}\left(\max _{t_{j} \leq t \leq t_{j+1}}\left|\prod_{j=1}^{n}\left(e^{i t}-e^{i t_{j}}\right)\right|\right) \tag{2}
\end{equation*}
$$

Khrushchev (2009) proved that $m_{n}=2$ and the optimal $\left\{t_{j}\right\}$ are equally spaced. Recently, Erdélyi, Hardin, and Saff (2015) obtained this using their inverse Bernstein inequality with the Gauss-Lucas theorem. We solve the following problem: Let $w(z)$ be a monic polynomial of degree n with no zero on the unit circle and let $\left\{t_{j}\right\}$ satisfy (1). Find

$$
m_{n, w}=\max _{\left\{t_{j}\right\}} \min _{1 \leq j \leq n}\left(\max _{t_{j} \leq t \leq t_{j+1}}\left|\frac{\prod_{j=1}^{n}\left(e^{i t}-z_{j}\right)}{w\left(e^{i t}\right)}\right|\right)
$$

This is a weighted version of (2). Although there is a version of inverse Bernstein inequality, but there is no analogue of Gauss-Lucas theorem for our situation. Indeed, we find that a zero-counting argument is enough. As a by-product, we provide an alternative, more elementary proof even for the polynomial case. (Received September 15, 2020)

