1163-42-85 Christina Giannitsi^{*}, cgiannitsi@gatech.edu, and Michael Lacey. Averaging with the divisor function. Preliminary report.

We shall discuss averages along the integers, normalized using the divisor function, and defined as

$$K_N f = \frac{1}{D(N)} \sum_{n \le N} d(n) f(x-n),$$

where the normalizing factor is given by $D(N) = \sum_{n \leq N} d(n)$. These averages satisfy a uniform, scale free ℓ^p -improving estimate for $p \in (1, 2)$, that is

$$\frac{1}{N^{1/p'}} \|K_N f\|_{\ell^{p'}} \lesssim \frac{1}{N^{1/p}} \|f\|_{\ell^p}, \quad p' = \frac{p}{p-1}$$

as long as f is supported on a subinterval of [0, N].

Moreover the associated maximal function $K^*f = \sup_N |K_N f|$ satisfies (p, p) sparse founds for $p \in (1, 2)$. That implies that K^* is bounded on $\ell^p(w)$ for $p \in (1, \infty)$, for all weights w in the Muckenhoupt A_p class. (Received August 11, 2020)