1163-42-85 Christina Giannitsi*, cgiannitsi@gatech.edu, and Michael Lacey. Averaging with the divisor function. Preliminary report.
We shall discuss averages along the integers, normalized using the divisor function, and defined as

$$
K_{N} f=\frac{1}{D(N)} \sum_{n \leq N} d(n) f(x-n)
$$

where the normalizing factor is given by $D(N)=\sum_{n \leq N} d(n)$. These averages satisfy a uniform, scale free ℓ^{p}-improving estimate for $p \in(1,2)$, that is

$$
\frac{1}{N^{1 / p^{\prime}}}\left\|K_{N} f\right\|_{\ell \rho^{\prime}} \lesssim \frac{1}{N^{1 / p}}\|f\|_{\ell \ell^{p}}, \quad p^{\prime}=\frac{p}{p-1}
$$

as long as f is supported on a subinterval of $[0, N]$.
Moreover the associated maximal function $K^{*} f=\sup _{N}\left|K_{N} f\right|$ satisfies (p, p) sparse founds for $p \in(1,2)$. That implies that K^{*} is bounded on $\ell^{p}(w)$ for $p \in(1, \infty)$, for all weights w in the Muckenhoupt A_{p} class. (Received August 11, 2020)

