1163-47-1006 Thomas Peebles* (tpeebles@albany.edu) and Michael Stessin (mstessin@albany.edu). Spectral Hypersurfaces for Operator Pairs and Hadamard Matrices.
Given a pair of $n \times n$ matrices A and B, if they have a projective joint spectrum $\sigma(A, B, A B, I)$ is $\left\{[x, y, z, t] \in \mathbb{C P}^{3}\right.$: $\left.x^{n}+y^{n}+(-1)^{n-1} z^{n}-t^{n}=0\right\}$ then this pair is unitary equivalent to a pair associated with a complex Hadamard matrix. Since there is a complete description of Hadamard matrices of order $n=3,4,5$, we give a list of those that generate the pair. Furthermore, if we consider the projective joint spectrum of $\sigma(A, B, A B, B A, I)$ and it is of the form $\left\{\left[x, y, z_{1}, z_{2}\right] \in \mathbb{C P}^{4}: x^{n}+y^{n}+(-1)^{n-1}\left(e^{2 \pi i} z_{1}+z_{2}\right)^{n}-t^{n}=0\right\}$ then the Hadamard matrix is exactly the Fourier matrix F_{n}. Under some mild conditions, we can extend these results to pairs of operators on a Hilbert space. (Received September 14, 2020)

