1163-47-599 Shuaibing Luo, Caixing Gu and Stefan Richter* (srichter@utk.edu). Higher order local Dirichlet integrals and de Branges-Rovnyak spaces.

Let $B = (b_1, \ldots, b_N)$ be a row vector of analytic functions such that $||B(z)||^2 = \sum_j |b_j(z)|^2 < 1$ for all z in the open unit disc \mathbb{D} . The de Branges-Rovnyak space H(B) is defined by the reproducing kernel $\frac{1-B(z)B(w)^*}{1-\overline{w}z}$. Assume that M_z acts boundedly on H(B) and let \mathcal{M} be the largest subspace of H(B) such that M_z is isometric on \mathcal{M} . We show that all b_i 's are rational, if and only if \mathcal{M}^{\perp} is finite dimensional, and that the degree of the rational tuple B equals the dimension of \mathcal{M}^{\perp} . Furthermore, in this case \mathcal{M}^{\perp} is invariant for the backward shift L, and there is a constant c such that $a = c_{\tilde{q}}^{\tilde{p}}$ satisfies $|a|^2 + ||B||^2 = 1$ a.e. on $\partial \mathbb{D}$. Here p and q are the characteristic polynomials of $M_z^* | \mathcal{M}^{\perp}$ and $L | \mathcal{M}^{\perp}$, and $\tilde{r}(z) = z^n r(1/z)$, $n = \dim \mathcal{M}^{\perp}$.

If B is rational and if $M_z : H(B) \to H(B)$ is a 2*m*-isometric operator, then all the zeros of p lie in the unit circle and the norm of the functions in H(B) can be expressed by use of *m*-th order local Dirichlet integrals. (Received September 10, 2020)