Let $B = (b_1, \ldots, b_N)$ be a row vector of analytic functions such that $\|B(z)\|^2 = \sum_j |b_j(z)|^2 < 1$ for all z in the open unit disc \mathbb{D}. The de Branges-Rovnyak space $H(B)$ is defined by the reproducing kernel $\frac{1-B(z)B(w)^*}{1-zw}$. Assume that M_z acts boundedly on $H(B)$ and let \mathcal{M} be the largest subspace of $H(B)$ such that M_z is isometric on \mathcal{M}. We show that all b_i's are rational, if and only if \mathcal{M}^\perp is finite dimensional, and that the degree of the rational tuple B equals the dimension of \mathcal{M}^\perp. Furthermore, in this case \mathcal{M}^\perp is invariant for the backward shift L, and there is a constant c such that $a = c^2$ satisfies $|a|^2 + \|B\|^2 = 1$ a.e. on $\partial \mathbb{D}$. Here p and q are the characteristic polynomials of $M_z^*|\mathcal{M}^\perp$ and $L|\mathcal{M}^\perp$, and $\tilde{r}(z) = z^n r(1/z)$, $n = \dim \mathcal{M}^\perp$.

If B is rational and if $M_z : H(B) \to H(B)$ is a $2m$-isometric operator, then all the zeros of p lie in the unit circle and the norm of the functions in $H(B)$ can be expressed by use of m-th order local Dirichlet integrals. (Received September 10, 2020)