1163-47-695Jonathan H Brown, Adam H Fuller, David R Pitts* (dpitts2@unl.edu) and Sarah A
Reznikoff. Quotients of some C*-algebras by Regular Ideals. Preliminary report.

For $S \neq \emptyset$ in a C^* -algebra \mathcal{A} , let $S^{\perp} := \{a \in \mathcal{A} : aS = Sa = 0\}$. An ideal J in \mathcal{A} is regular if $(J^{\perp})^{\perp} = J$.

Given an inclusion of C^* -algebras $\mathcal{D} \subseteq \mathcal{C}$ and an ideal $J \subseteq \mathcal{C}$, desirable properties need not pass to the quotient inclusion, $\mathcal{D}/(\mathcal{D} \cap J) \subseteq \mathcal{C}/J$. For example, if \mathcal{D} is the C^* -algebra generated by the range projections of finite paths in the C^* -algebra, $C^*(E)$, of a row-finite directed graph E, the Cuntz-Krieger uniqueness theorem holds for the pair $(C^*(E), \mathcal{D})$ when E satisfies "condition (L)". But condition (L) need not be preserved under quotients.

In this talk, I will discuss the following.

Theorem 1: Let E be a row-finite directed graph satisfying condition (L). If $J \subseteq C^*(E)$ is a REGULAR ideal, then J is invariant under the gauge action and $C^*(E)/J \simeq C^*(F)$, where F is a row-finite directed graph satisfying condition (L). **Theorem 2:** Suppose \mathcal{D} is a Cartan MASA in the C^{*}-algebra \mathcal{C} and J is a regular ideal in \mathcal{C} . Then $\mathcal{D}/(\mathcal{D} \cap J)$ is a Cartan MASA in \mathcal{C}/J . (Received September 11, 2020)