1163-49-767 Enrique Alvarado* (enrique.alvarado@wsu.edu), Bala Krishnamoorthy (kbala@wsu.edu) and Kevin R Vixie (vixie@speakeasy.net). The Maximum Distance Problem and Minimum Spanning Trees.
Given a compact $E \subset \mathbb{R}^{n}$ and $s>0$, the maximum distance problem seeks a compact and connected subset of $\mathbb{R}^{n}$ of smallest one dimensional Hausdorff measure whose $s$-neighborhood covers $E$. For $E \subset \mathbb{R}^{2}$, we prove that minimizing over minimum spanning trees that connect the centers of balls of radius $s$, which cover $E$, solves the maximum distance problem.

The main difficulty in proving this result is overcome by the proof of a Lemma which states that one is able to cover the $s$-neighborhood of a Lipschitz curve $\Gamma$ in $\mathbb{R}^{2}$ with a finite number of balls of radius $s$, and connect their centers with another Lipschitz curve $\Gamma_{*}$, where $\mathcal{H}^{1}\left(\Gamma_{*}\right)$ is arbitrarily close to $\mathcal{H}^{1}(\Gamma)$.

We also present an open source package for computational exploration of the maximum distance problem using minimum spanning trees, available at https://github.com/mtdaydream/MDP_MST.

A preprint is available at https://arxiv.org/abs/2004.07323. (Received September 15, 2020)

