1163-57-424Hans U Boden, Micah Chrisman* (chrisman.76@osu.edu) and Homayun Karimi. The
Gordon-Litherland pairing for knots in thickened surfaces.

The Gordon-Litherland pairing of knots in S^3 is a symmetric bilinear form that unifies the quadratic forms of Trotter and Goeritz. The Gordon-Litherland pairing was extended to knots in \mathbb{Z}_2 -homology 3-spheres by Greene. Here we extend the Gordon-Litherland pairing to knots in thickened surfaces $\Sigma \times I$, where Σ is closed and oriented. Our extended pairing is defined for all \mathbb{Z}_2 -homologically trivial knots in $\Sigma \times I$. The resulting signature invariants depend only on the S^* -equivalence class of the (unoriented) spanning surface F. Previously, Im-Lee-Lee defined signature invariants for checkerboard colorable knots in thickened surfaces using Goeritz matrices. For \mathbb{Z} -homologically trivial knots in $\Sigma \times I$, signature invariants were defined by Boden-Chrisman-Gaudreau via a modification of the Seifert pairing. Our Gordon-Litherland pairing likewise unifies both these signature invariants for knots in $\Sigma \times I$. We show that the extended Gordon-Litherland pairing can be realized as a relative intersection form of a twofold branched cover of F pushed into a thickened 3-manifold $W \times I$, where $\partial W = \Sigma$. Geometric applications of these results to virtual knots are discussed. (Received September 06, 2020)