Mercurial Signatures.

A canonical digital signature scheme consists of three algorithms: key generation, signing, and verifying. It needs to be (1) correct: verification accepts (PK, M, σ) if σ is the output of the signing algorithm on input (SK, M), for SK corresponding to PK, and (2) unforgeable: (informally) a signature that verifies under PK can only be produced by PK’s owner.

In a mercurial signature, public keys and messages are partitioned into equivalence classes using relations \equiv_k and \equiv_m, and there are additional algorithms:

* ConvertSig: On input (PK, M, σ) where σ is a valid signature on M under public key PK, output (PK', M, σ'), where $PK' \equiv_k PK$, and σ' is a valid signature on M under public key PK'.

* ChangeRep: On input (PK, M, σ) where σ is a valid signature on M under public key PK, output (PK, M', σ'), where $M' \equiv_m M$, and σ' is a valid signature on M' under public key PK.

Further, for an appropriate choice of message space and public key space, the new message M' cannot be linked to the original M, and the new public key PK' cannot be linked to PK.

In this talk we will go over constructions and applications of mercurial signatures and open problems related to them. (Received September 15, 2020)