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1. Lecture 1: Recent results and open questions

1.1. Introduction. Over the past thirty years symplectic geometry has
developed its own identity, and can now stand alongside traditional Rie-
mannian geometry as a rich and meaningful part of mathematics. The
basic definitions are very natural from a mathematical point of view: one
studies the geometry of a skew-symmetric bilinear form ω rather than a
symmetric one. However, this seemingly innocent change of symmetry has
radical effects. For example, one dimensional measurements vanish since
ω(v, v) = −ω(v, v) by skew-symmetry. Hence symplectic geometry is an es-
sentially 2-dimensional geometry that measures the area of a complex curve
instead of the length of a real curve.

Here are some of the features that distinguish it from more traditional
geometries.
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• The theory has two faces. There are two kinds of geometric subobjects
in a symplectic manifolds, hypersurfaces and Lagrangian submanifolds that
appear in dynamical constructions, and even-dimensional symplectic sub-
manifolds that are closely related to Riemannian and complex geometry.
(As we shall see, the analog of a geodesic in a symplectic manifold is a
two-dimensional surface called a J-holomorphic curve.)

• Symplectic structures first arose in the Hamiltonian formulation of the
theory of classical mechanics and this tight interconnection with physics
has persisted ever since. A longstanding mystery in mathematics is the
extraordinary power of ideas from physics, notably string theory. These
have many ramifications in the symplectic world, specially via the deep
notion of mirror symmetry which relates objects in symplectic geometry
to those in complex algebraic geometry. Though at first this idea seemed
completely mysterious, many nontrivial examples of different kinds have now
been worked out and fully understood in a mathematical way.

• Although all the basic symplectic concepts are initially expressed in the
smooth category (for example, in terms of differential forms), in some in-
trinsic way that is not yet well understood they do not really depend on
derivatives. There is a notion of the symplectic capacity of a subset A
that is continuous with respect to the Hausdorff distance function on sets
and has the property that a diffeomorphism is (anti-) symplectic if and only
if it preserves capacity. Thus symplectic geometry is essentially topological
in nature. Indeed one often talks about symplectic topology.

• Darboux’s theorem says that locally all symplectic manifolds are the
same, which means that the only invariants that distinguish one from an-
other are global. On the other hand, the lack of local invariants makes it
possible for there to be many automorphisms of the local structure. In-
deed any smooth function on a symplectic manifold generates a flow on the
manifold that consists of symplectomorphisms (i.e. diffeomorphisms that
preserve the symplectic structure).

• There is a fascinating mix of flexibility and rigidity in the symplectic
world. Some situations and constructions are governed by only homotopy
data (flexibility) while others are constrained by various invariants (rigid-
ity). As one example, one can contrast symplectic with Kähler geometry.
A symplectic structure is a significant weakening of a Kähler structure, to
such an extent that in some situations all extra structure is lost, while in
others the structure remains, perhaps in different form. For instance, the
fundamental group of a closed Kähler manifold satisfies various subtle con-
straints, while that of a symplectic manifold can be any finitely presented
group. On the other hand, while deformations of the complex structure of a
Kähler manifold are not seen directly in terms of the underlying symplectic
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manifold, they can sometimes be seen in the structure of its group of sym-
plectomorphisms. Much recent work has been devoted to understanding
where rigidity stops and flexibility takes over.

• Another interesting phenomenon can be thought of as a local to global
principle: statements that hold locally often have analogs that are valid
globally. This can be interpreted in various ways. The local statement might
be linear, or something valid for short periods of time, or something valid
in a small open subset of a manifold on which the geometry is standard.
Correspondingly, the global statement would be nonlinear, or valid for all
time, or valid on the whole manifold. Arnold’s conjectures (discussed more
below) are one expression of this idea.

Note: Some parts of these notes are taken from the survey article [31].
Also, these notes contain much more information that will be in the lectures
themselves.

1.2. Basic notions. Let M2n be a smooth manifold without boundary. A
symplectic structure ω on M is a closed (dω = 0), nondegenerate
(ωn = ω ∧ · · · ∧ ω 6= 0) smooth 2-form. Thus the intrinsic measurements
that one can make on a symplectic manifold are 2-dimensional, i.e. if S is a
little piece of 2-dimensional surface then one can measure∫

S
ω = areaω S.

• By Stokes’ theorem, the closedness of ω is equivalent to saying that this
integral does not change when one deforms S keeping its boundary fixed.

• The nondegeneracy condition is equivalent to the fact that ω induces
an isomorphism between the vector fields X on a manifold and the space
of 1-forms via the correspondence:1

(1.1)
TxM

∼=−→ T ∗xM
X 7→ ιXω = ω(X, ·)

vector fields 1-forms

These two conditions work together as follows. Recall the Cartan formula
for the Lie derivative:

(1.2) LX(ω) = d(ιXω) + ιX(dω) = d(ιXω),

where we use the fact dω = 0. It follows that if the 1-form ω(X, ·) is closed
then Lx(ω) = 0; in other words the flow of X preserves ω. But because
ω is nondegenerate, for each smooth function H : M → R, we may define
a unique vector field XH by requiring ιXω = dH. This is called either
the Hamiltonian vector field of H or the symplectic gradient of H.
Similarly, if Ht depends on time t ∈ R the flow of the time dependent vector
field XHt where ιXtω = dHt, preserves ω. Thus:

1Warning: many authors use a different sign here, defining ιXω := −ω(X, ·).
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Basic Fact: Every time-dependent function H : M × R → R on a closed
symplectic manifold (M,ω) generates a flow φt, t ∈ R, such that

φ∗t (ω) = ω, ∀t.

If H is time independent, the flow preserves the level sets H = const.

Proof. We only need to check the last statement. For this, we need XH to
be tangent to the level set H = const. But (at regular points x) this tangent
space is just the kernel of the linear map dHx : TxM → R, where dHx(v) =
ω(XH , v). Thus dHx(XH) = ω(XH , XH) = 0 by skew symmetry. �

An ω-preserving diffeomorphism M → M is called a symplectomor-
phism.

Comparison with other geometries: The above arguments show that
the group Symp(M,ω) of all symplectomorphisms of M is infinite dimen-
sional. The corresponding group in Riemannian geometry would be the
group of isometries, which is always finite dimensional (and may well be
finite). Thus symplectic geometry is significantly more flexible than Rie-
mannian geometry. We can also compare with volume geometry, since every
symplectic structure ω determines a volume form ωn/n!, that is, a nonvan-
ishing top-dimensional form. In two dimensions, of course, ω is simply an
area (or volume) form, but in higher dimensions we will see that symplectic
geometry is significantly more rigid than volume geometry. In particular,
symplectomorphisms have many special properties that distinguish them
from diffeomorphisms that merely preserve volume.

Examples The linear form ω0 = dx1 ∧ dy1 + . . . dxn ∧ dyn on Euclidean
space R2n. In this case, the correspondence (1.1) between tangent and
cotangent vectors is given explicitly by the formulas

(1.3)
X = ∂

∂xj
←→ ιXω0 = dyj

Y = ∂
∂yj

←→ ιY ω0 = −dxj .

In Riemannian geometry one identifies the tangent space TxR2n of vectors
and the cotangent space T ∗xR2n of covectors (or 1-forms) by making the
following identifications:

∂
∂xj
≡ dxj , ∂

∂yj
≡ dyj .

The isomorphism in (1.3) differs from this by a quarter turn.2 Correspond-
ingly the symplectic gradient vector XH of a function H : R2n → R
differs from usual gradient ∇H by a quarter turn, i.e.

∇H = J0XH .

2If one pairs the coordinates xj , yj thinking of them as the real and imaginary parts of
a complex coordinate zj = xj + iyj , then this quarter turn corresponds to multiplication
by i. Below, we call this operator J0.
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Explicitly, we can calculate

XH =
∑
j

∂H
∂yj

∂
∂xj
− ∂H

∂xj
∂
∂yj

.

For example, the flow of the function H := π
∑
|zj |2 on R2n ≡ Cn is the

clockwise rotation

(1.4) (z1, . . . , zn) 7→ (e2πitz1, . . . , e
2πitzn),

which preserves the spheres H = const and is periodic of period 1.
In general, the symplectic gradient flow is given by solutions (x(t), y(t))

to the Hamiltonian equations

ẋ(t) = ∂H
∂yj

, ẏ(t) = − ∂H
∂xj

(where ˙ denotes the time derivative.) In classical mechanics, the function
H is the energy and the flow φt describes the time evolution of the system.
Thus, the statement that the flow of XH preserves H means that energy
is conserved as the system changes with time.

Kähler manifolds: Every Kähler manifold (M,J, g) has a symplectic
structure ωJ . Recall that a Kähler manifold M first of all is a complex
manifold, i.e. it is made from pieces of complex Euclidean space Cn that are
patched by holomorphic maps. Thus its tangent bundle TM has a complex
structure. This is expressed in terms of the automorphism J : TM → TM
with J2 = −id induced by multiplication by i. (J is called an almost com-
plex structure). One adds a metric g to this complex manifold and then
defines the symplectic form ωJ by setting

ωJ(x, y) = g(Jx, y).

(For this to work, i.e. for ω to be closed, g must be compatible with J in a
rather strong sense: J has to be parallel with respect to the Levi-Civita con-
nection. Not all complex manifolds can be given a Kähler structure.) Kähler
manifolds are a very important subclass of symplectic manifolds, but cer-
tainly not all of them — it is still not understood exactly how much arbitrary
symplectic manifolds can differ from Kähler ones. Note that any complex
submanifold S of a Kähler manifold is symplectic, i.e. the restriction of ω
to S is nondegenerate.

Cotangent bundles. An opposite kind of example (relating to the dynam-
ical aspects of symplectic geometry) is given by the cotangent bundle T ∗X
of an arbitrary smooth manifold X. Because T ∗X is the set of all 1-forms
on X, it carries a universal 1-form λcan. (This can be written as

∑
i pidqi,

in terms of local coordinates (pi, qi) on T ∗X, where q1, . . . , qn are coordi-
nates on X and the pi are the corresponding momentum coordinates in the
fibers T ∗qX.) The canonical symplectic form Ωcan on T ∗X is then simply
−dλcan =

∑
i dqi ∧ dpi. Notice that it vanishes on the zero section and the

fibers of T ∗X. 2
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Basic properties.
We now state three elementary theorems about symplectic geometry, that

together say that locally one cannot distinguish one structure from another.
They also can be thought of as instances of the linear (local) to nonlinear
(global) principle mentioned earlier. The proofs all involve constructing
diffeomorphisms from a given symplectic form ω to a model (often a linear)
form ω0, which is accomplished via Moser’s homotopy method, an elementary
but clever use of Cartan’s formula (1.2). (For proofs see for example [35,
Chapter 3].)

The most basic of these results is Darboux’s theorem. It is the analog of
the fact that any two skew-symmetric forms on a vector space of dimension
2n are isomorphic.

Theorem 1.1 (Darboux). Every symplectic form ω on a smooth manifold
is locally diffeomorphic to the standard form ω0 on R2n.

In a smooth manifold all k-dimensional smooth submanifolds S are locally
diffeomorphic. However, in the symplectic world things are very different
since the rank of the restriction of the symplectic form to S can vary widely.
The most important kinds of submanifolds are:

• symplectic: the restriction ω|S has maximal rank, i.e. is nondegenerate
(e.g. complex submanifolds of a Kähler manifold);

• Lagrangian: S has half the dimension of M and ω|S ≡ 0 (e.g. the zero
section and fibers of a cotangent bundle, or the real part of an algebraic
Kähler manifold viz. RPn ⊂ CPn);

• a hypersurface: in this case ω|S always has a one-dimensional kernel
{v : ω(v, w) = 0, ∀w ∈ TS}. Thus such a surface carries a 1-dimensional
foliation called the characteristic foliation, which is given by the flow
of XH whenever S = {H = const}. In particular if ω|S is exact and this
flow always twists positively, then by McDuff [29] there is an associated
contact structure on S, 3 and locally near S we can write ω = d(tα) for
a suitable choice of a contact 1-form α on S and a transverse coordinate
t ∈ (−ε, ε). In this case S is said to have contact type or to be convex.

Example 1.2. As we saw above, the characteristic foliation on the boundary
of the ball B2n is given by the orbits of the diagonal action of the circle on
R2n ≡ Cn as in (1.4). In this case one can choose the contact form α so that
its Reeb flow is also this circle action.

The next theorem says that a symplectic structure has no interesting
deformations within its cohomology class.

3Contact geometry is the odd dimensional twin of symplectic geometry; cf. [18, 35]. A
contact structure is a maximally non integrable field of hyperplanes ξ, which (if cooriented)
can be describes as kerα for some 1-form α satisfying α∧αn−1 6= 0. The nonintegrability
condition implies that in dimension 2n−1 the maximum dimension of a submanifold that
is everywhere tangent to ξ in n − 1. Such manifolds are called Legendrian and are the
contact analogs of Lagrangian submanifolds.
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Theorem 1.3 (Moser’s stability theorem). Given ωt, t ∈ [0, 1], any family of
cohomologous symplectic forms on a closed manifold M , there is a family of
diffeomorphisms φt, t ∈ [0, 1], of M with φ0 = id and such that φ∗t (ωt) = ω.

For example, in dimension two, the set of area forms with the same total
area is convex. Hence any pair can be joined by such a path and so are
diffeomorphic. However, in dimensions ≥ 4, the space of symplectic forms in
a given cohomology class is never convex, and can have interesting topology;
in particular it need not be connected.

Since a path of diffeomorphisms from the identity must act trivially on
cohomology the above conclusion cannot hold if the cohomology class [ωt]
varies. However, one might expect that a path of noncohomologous forms
ωt with [ω0] = [ω1] would at least have diffeomorphic endpoints. But this
need not be so; cf. McDuff [28].

There are also so-called neighborhood theorems stating that the sym-
plectic structure of a neighborhood of a symplectic or Lagrangian manifold
S is determined by (S, ωS) together with some normal bundle data along S.
In particular we have:

Theorem 1.4 (Weinstein). Every Lagrangian submanfold L ⊂ (M,ω) has
a neighborhood symplectomorphic to a neighborhood of the zero section in
(T ∗L,Ωcan).

Lagrangian submanifolds are crucial elements of symplectic geometry. For
example, it is easy to see that a diffeomorphism φ : M → M preserves ω
if and only if graphφ = {(x, φ(x)) : x ∈ M} is a Lagrangian submanifold
of the product (M ×M,−ω × ω). One can use this to expand the kinds
of maps one looks at when trying to make functorial constructions. The
problem is that every smooth ω-preserving map must have Jacobean deter-
minant 1 everywhere in order to preserve the volume form and so must be
a diffeomorphism. This is very limiting. However it is possible to define
a consistent and interesting notion of Lagrangian correspondence from
(M0, ω0) to (M1, ω1) by looking at Lagrangian submanifolds in the product
(M0 ×M1,−ω0 × ω1); cf. Wehrheim–Woodward [44], Weinstein [45].

Main tools
There is an important difference between Kähler manifolds and symplectic

manifolds. A Kähler manifold M has a fixed complex structure built into
its points. One adds a metric g to this complex manifold and then defines
the symplectic form ωJ by setting

ωJ(v, w) = g(Jv,w), ∀v, w ∈ TxM,

where J is the associated almost complex structure. On the other hand,
a symplectic manifold first has the form ω, and then there is a compatible
family of almost complex structures imposed at the tangent space level (not
on the points). More precisely, we say that almost complex structure J :
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TM → TM is an ω-compatible on (M,ω) if for all v, w ∈ TM we have

(1.5) ω(Jv, Jw) = ω(v, w), v 6= 0 =⇒ ω(v, Jv) > 0.

One can prove (cf. [35, Chapter 2]) that each symplectic manifold (M,ω)
has a contractible (in particular, nonempty) family of such J ; moreover the
associated form g(·, ·) := ω(·, J ·) is symmetric and positive definite.

It was the great insight of Gromov [19] to realise that in symplectic geom-
etry the correct replacement for geodesics are J-holomorphic curves. These
are maps u : (Σ, j) → (M,J) of a Riemann surface Σ into M that satisfy
the generalized Cauchy–Riemann equation:

du ◦ j = J ◦ du.

(Here j is the complex structure on the Riemann surface.) In fact, the
image u(Σ) is a minimal surface in M when it is given the metric gJ , so
the analogy with geodesics is not far fetched. Because the Cauchy–Riemann
equation is elliptic, there is a very nice theory of these curves; for details
and more references see [36]. If the domain is closed then the space of J-
holomorphic maps is the solution space of a Fredholm operator and so is
finite dimensional. Moreover, in many situations one can understand its
compactification, thereby deriving some invariants that are independent of
the particular choice of J . If the domain is open (for example a cylinder
R×S1) or if it has boundary (for example, a disk D2), then it is possible to
define a corresponding Fredholm operator by imposing suitable conditions
at infinity or along the boundary. (For example, in the case of disk the
boundary must map to a Lagrangian submanifold.)

Variations of this approach form the primary way of constructing sym-
plectic invariants. For example,

• in quantum cohomology one counts closed genus 0 curves to define
a deformation of the cup product on H∗(M) called the quantum cup
product;

• in Hamiltonian Floer theory one deforms the J-holomorphic curve
equation for a cylinder via the flow of a periodic Hamiltonian Ht, t ∈ S1,
to build a theory that relates Hamiltonian dynamics and geometry;

• Lagrangian Floer theory measures the “entanglement”, or generalized
intersection, between two Lagrangian submanifolds L0, L1 by counting J-
holomorphic strips u(R× [0, 1]) with u(R×{i}) ∈ Li whose ends converge
to points in L0 ∩ L1, and leads to the definition of the Fukaya category;

• symplectic homology is a more topological reformulation of Hamilton-
ian Floer theory that gives invariants of noncompact symplectic manifolds
that are “convex at infinity” in a sense explained below.

All the above approaches give tools for measuring symplectic rigidity. For
example, if the Floer homology of a pair of Lagrangians L0, L1 does not
vanish then it is impossible to move L0 by a Hamiltonian isotopy to be
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disjoint from L1. Also, McLean [38] recently used symplectic homology to
detect infinitely many different symplectic structures on R2n, n > 2.

A second circle of ideas, pioneered by Gromov and Eliashberg, has de-
veloped powerful ways to construct symplectic forms via surgery. There
is a general method due to Gromov that constructs a symplectic form on
any open manifold, but this form is completely uncontrolled at infinity
and cannot be used as a building block to understand closed manifolds.
However, for closed 2n-dimensional manifolds with integral symplectic form
(i.e. [ω] ∈ H2(M ;Z)), there is a beautiful construction due to Donaldson
that provides a symplectic codimension 2 submanifold Dk ⊂ M Poincaré
dual to k[ω], for sufficiently large k. Moreover, just as in the Lefschetz
hyperplane theorem, the complement MrDk has the homotopy type of a
finite n-dimensional cell complex, and is “convex at infinity” in the sense of
Eliashberg–Gromov.

This convexity condition, a symplectic version of pseudoconvexity in
complex geometry, implies that there is a compact submanifold M0 of M
such that MrM0

∼= ∂M0 × (0,∞), where the codimension-1 boundary
∂M0 has contact type with contact form α and the end has the associated
symplectic structure d(rα), r ∈ (0,∞). Contact manifolds are much more
amenable to surgery than symplectic manifolds: for example the connected
sum of two closed contact manifolds is contact (which is always false for sym-
plectic 4-manifolds, and quite possibly always false in any dimension). It is
expected (but to my knowledge not yet proved) that, just as in the Kähler
case, MrDk satisfies a strong global convexity condition; in Eliashberg’s
terminology, it should be a Weinstein manifold. By Eliashberg [13], this
would imply that in dimensions six and above it carries a Stein structure,
i.e. a compatible complex structure induced from a proper embedding into
some Euclidean space CN . In other words, in high dimensions a closed
integral symplectic manifold should have a “hyperplane decomposition” as
Dk ∪ (MrDk), where Dk is a symplectic manifold of dimension 2n− 2 and
MrDk is affine complex.

The book Cieliebak–Eliashberg [5] describes the relation between the two
notions, Weinstein and Stein, and explains how to construct manifolds with
these structures by surgery. This is always possible in dimensions > 4,
though there are obstructions in dimension four. The construction in di-
mension 2n is flexible (i.e. governed by formal homotopy invariants) when
one adds k-handles for k < n, but can be more rigid when adding n-handles.
Now, k-handles are attached along (k − 1)-spheres in the contact bound-
ary that are isotropic in the sense that they are everywhere tangent to ξ.
Thus for top dimensional handles they are Legendrian. Recently Emmy
Murphy [39] introduced the idea of a loose Legendrian, showing that they
are plentiful. Handles attached along loose Legendrians are flexible: for
example, the symplectic homology of a Weinstein manifold vanishes if it is
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obtained from a ball by attaching k-handles where either k < n or the attach-
ing sphere is loose. However there are plenty of Weinstein manifolds with
nonvanishing symplectic homology. Thus there is a very delicate bound-
ary here between flexibility and rigidity than needs further exploration; for
further discussion and references, see Cieliebak–Eliashberg [6].

1.3. Open Questions. There is a huge variety of open problems in sym-
plectic geometry, and we will only mention a few. The next two lectures will
discuss embedding questions, such as:

• when does one (open) symplectic manifold (U0, ω0) embed symplec-
tically in another (U1, ω1)?
• what obstructions are there?

The answers dictate what kinds of symplectically invariant measurements
can be made and hence illuminate the geometric meaning of a symplectic
structure. For now, we will put these considerations to one side, and turn
to other questions.

In 2-dimensions the symplectic form is an area form, so that symplec-
tic geometry is just area preserving geometry. Although many dynamical
questions remain in this dimension, there are no topological questions: a
connected 2-manifold has a symplectic structure if and only if it is ori-
entable, and by Moser’s Theorem 1.3 the only invariant is the total area.
Hence in these lectures we are interested in dimensions four and above. As
in smooth topology, dimension four is special. It turns out that gauge the-
ories (in particular Seiberg–Witten theory) have very special properties on
symplectic manifolds (first discovered by Taubes) that for example relate
Seiberg–Witten theory to the theory of J-holomorphic curves. This gives a
great deal of information in this dimension. It is not clear how much of this
special structure remains in higher dimensions.

Question 1.5. To what extent does symplectic geometry in dimensions > 4
retain the rigid features of the four-dimensional theory?

We will see that some information/restrictions are retained and some are
not. Here is a more specific question. In dimension four, one can do surgery
on a closed symplectic manifold (M0, ω0) to construct a symplectic mani-
fold (M1, ω1) with the same homotopy type as M0 but different Seiberg–
Witten invariants; cf. Fintushel–Stern [15].4 Then (M0, ω0), (M1, ω1) can-
not be symplectomorphic. But they also cannot be diffeomorphic, because
Seiberg–Witten invariants depend only on the smooth structure of a mani-
fold. Now consider the products of these manifolds with (S2, σ). One then
gets two symplectic manifolds (M0 × S2, ω0 × σ), (M1 × S2, ω1 × σ) which
are diffeomorphic (at least when the manifolds are simply connected) but

4In fact they construct infinitely many different symplectic manifolds each with the
homotopy type of the K3 surface.
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are not deformation equivalent as symplectic manifolds.5 This holds,
because although in the smooth world Seiberg–Witten invariants exist only
in dimension four, in the symplectic world they coincide with the so-called
Gromov invariants given by counting J-holomorphic curves, and so they
survive under product with S2. Moreover the resulting invariants do not
change when the form ωt varies smoothly.

Question 1.6 (Donaldson’s four-six question). If (M0, ω0), (M1, ω1) are
symplectic 4-manifolds such that (M0 × S2, ω0 × σ), (M1 × S2, ω1 × σ) are
deformation equivalent, must M0,M1 be diffeomorphic?

This question can be considered in the framework of the passage from
four to six dimensions. But it can also be considered under the rubric: to
what extent does symplectic structure capture smooth structure? Here is
another variant of this second question.

Question 1.7 (Eliashberg). Suppose that the two smooth closed manifolds
M0,M1 are homeomorphic. Are they diffeomorphic precisely when their
cotangent bundles T ∗M0, T

∗M1 with the canonical symplectic structure are
symplectomorphic?

The first (and so far only) result in this direction is due to Abouzaid, who
showed in [1] that if Σ is an exotic 4k + 1 dimensional sphere that does not
bound a parallelizable manifold (and these exist) then T ∗Σ and T ∗S4k+1 are
not symplectomorphic. He does this by showing that every homotopy sphere
that embeds as a Lagrangian in T ∗S4k+1 must bound a parallelizable man-
ifold, which he constructs directly out of certain perturbed J-holomorphic
curves. This result also throws light on the following conjecture about exact
Lagrangians in T ∗M , where L is called exact if the restriction to L of the
canonical 1-form λcan on T ∗M is exact.

Conjecture 1.8 (Arnol’d’s Nearby Lagrangian Conjecture). Every exact
Lagrangian L in T ∗M can be moved to the zero section by a path of Hamil-
tonian symplectomorphisms.

Here there is a quite a bit of known information: in particular the pro-
jection L → M along the fibers of T ∗M must be a homotopy equivalence;
cf. Abouzaid–Kragh [2] for recent results and references.

Finally, we end with a few words on the existence question: which man-
ifolds have a symplectic structure? As mentioned earlier, Gromov proved
that every open manifold with an almost complex structure also has a sym-
plectic structure. But the question is wide open in the closed case. Here
one must require that that M has an almost complex structure J , and that
there there is a cohomology class a ∈ H2(M ;R) with an > 0, where M

5Two symplectic manifolds (M0, ω0), (M1, ω1) are called deformation equivalent if there
is a diffeomorphism φ : M0 →M1 and a path of symplectic structures ρt, t ∈ [0, 1] on M0

such that ρ0 = ω0, ρ1 = φ∗(ω1).
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is assumed oriented compatibly with the orientation on the complex bun-
dle (TM, J). In four dimensions manifolds are known that satisfy these
criteria but yet do not support any symplectic structure: the first exam-
ple (due to Taubes [42] via Seiberg–Witten theory) was the connected sum
CP 2#CP 2#CP 2. However, although if one imposes suitable additional re-
strictions on the structures one can show in some cases that forms do not
exist, the answer to the following question is still unknown.

Problem 1.9. Is there a closed almost complex manifold of dimension ≥ 6
that has a class a with an > 0 but no symplectic structure ω?

The preponderance of evidence at this stage seems to indicate that the
answer should be “yes”. On the other hand, the construction methods for
symplectic structures on open manifolds discussed above are progressing to
such point that one might be able to build a symplectic structure on M by
picking a suitable divisor D, putting symplectic structures on D and MrD,
and then matching them up in some way. Since D would be four dimensional
(assuming M is six dimensional), it of course might not have a symplectic
structure. Therefore one would have to get around that difficulty, as well as
deal with the “matching” problem. Clearly there is a lot of future work to
be done.
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2. Lecture 2: Embedding questions: obstructions and
constructions

Embedding questions first came into prominence in Gromov’s 1985 pa-
per [19] in which he asked the following question:

Gromov’s question: What can one say about the symplectic images φ(B)
of a ball? How are the symplectic and volume preserving cases different?

This question is interesting even if we restrict to the case when B = B2n

is a closed Euclidean ball in R2n with its standard structure ω0 and we
consider symplectic embeddings φ of B into (R2n, ω0). (For short we will

write φ : B
s
↪→ R2n for such an embedding.

The following result can be easily proven using Moser’s homotopy method.

Volume preserving embeddings: if V ⊂ R2n is diffeomorphic to a closed
ball B with the same volume then there is a volume preserving diffeomor-

phism ψ : B
∼=→ V .

The analogous statement is not true for symplectomorphisms (in dimen-
sions > 2) since the boundary ∂V of V has symplectic invariants given by
its characteristic foliation (equivalently by the flow of any Hamiltonian H
that is constant on ∂V ); cf. Example 1.2. Therefore, instead of hoping to
find symplectomorphisms from one region onto another, we can look for sym-
plectomorphisms from one region into another, i.e. a symplectic embedding.
We will see later that the characteristic foliation still has a very strong in-
fluence on which embeddings are possible, via the notions of Ekeland–Hofer
and ECH capacities.

Notational Conventions: We denote

B(a) : =
{

(x1, y1, x2 . . . , yn) ∈ R2n :
n∑
j=1

π(x2j + y2j ) ≤ a
}
,

Z(a) : = B2(A)× R2n−2 = {(x1, y1, x2 . . . , yn) ∈ R2n : π(x21 + y21) ≤ A},

sometimes adding a superscript 2n to emphasize the dimension. Thus B(a)
is a ball labelled by the area of its intersection with the x1, y1-plane, while
Z(a) is an infinite cylinder with cross section of area a. Note that its first
two coordinates lie in symplectically paired directions. Further, both re-
gions have the property that each leaf of the characteristic foliation on their
boundaries is a circle that bounds a disk of area a.

Theorem 2.1 (Gromov’s Nonsqueezing Theorem). There is a sym-
plectic embedding

φ : B2n(a)
s
↪→ Z2n(A)

if and only if a ≤ A.
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Figure 2.1. Does the ball embed symplectically in the cylinder?

This nonsqueezing property is fundamental: we explain why below. Note
for now that it implies that symplectomorphisms are very different from
volume preserving embeddings. For example, the largest ball that embeds
symplectically in the polydisk B2(1)×B2(1) is B4(1) which has volume just
half that of the polydisk.

2.1. Symplectic capacities. In their paper [11], Ekeland and Hofer for-
malized the idea of a symplectic capacity, which is a measurement c(U, ω) of
the size of a symplectic manifold (U, ω) (possibly open or with boundary)
with the following properties:

(i) (domain of definition) c is a function with values in [0,∞] defined on some
class of symplectic manifolds of fixed dimension that contains the closures
of all open subsets of Euclidean space and is invariant under rescaling;

(ii) (monotonicity) if there is a symplectic embedding (U, ω)
s
↪→ (U ′, ω′) then

c(U, ω) ≤ c(U ′, ω′);
(iii) (scaling) c(U, λω) = λc(U, ω) for all λ > 0;

(iv) (strong normalization)6 a = c
(
B2n(a)

)
= c
(
Z2n(a)

)
.

The monotonicity property implies that c is a symplectic invariant, that is,
it takes the same value on symplectomorphic sets, while the scaling property
implies that it scales like a 2-dimensional invariant. One can satisfy the first
three properties by considering an appropriate power of the volume; for

example one could consider the function c(U, ω) :=
(∫
U ω

n
)1/n

. However,
this function c does not satisfy the second half of the normalization axiom.
Indeed, the requirement that a cylinder has finite capacity is what makes
this an interesting definition.

The nonsqueezing theorem immediately implies that capacities do exist.

6Here I have made the strictest reasonable requirement. One could also simply ask
that 1 = c

(
B2n(a)

)
< c

(
Z2n(a)

)
<∞.
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Theorem 2.2. The Gromov width cG(U, ω) := sup{a |B2n(a)
s
↪→ (U, ω)} is

a capacity on the set of all symplectic 2n-dimensional manifolds.

The next result holds because the monotonicity and scaling properties
imply that if a diffeomorphism φ preserves a capacity c then so does its
derivative at any point. However, a linear map that preserve a capacity
must be symplectic (or antisymplectic). Thus, we have:

Proposition 2.3 (Eliashberg [12], Ekeland–Hofer [11]). Every diffeomor-
phism of (M,ω) that preserves a capacity is (anti)symplectic, i.e. satisfies
φ∗(ω) = ±ω. Further, for every symplectic manifold (M,ω), the group of
compactly supported symplectomorphisms is C0-closed in the group of all
diffeomorphisms, i.e. if φk is a sequence of diffeomorphisms that converge
in the uniform topology to a smooth diffeomorphism φ∞ then φ∞ is also a
symplectomorphism.

Thus one can define what it means for a smooth map f to be symplectic
without using the derivative of f . Hence there is a notion of a symplectic
homeomorphism: namely one that preserves a capacity. Very little is
known about this notion. As we will now see, there is a great variety of
capacity functions, and for all we know they each might give rise to different
classes of symplectic homeomorphisms.

A variety of symplectic capacities. The following examples illustrate
just a few of the possible definitions.

(i) The Gromov width. cG(U, ω) = sup{πa |B2n(a)
s
↪→ (U, ω)}.

(ii) The Hofer–Zehnder capacity [23]. Recall that every smooth func-
tion H : M → R on a closed symplectic manifold gives rise to a vector field
XH with ω(XH , ·) = dH(·), which integrates to a 1-parameter subgroup
φHt , t ∈ R, of the group of symplectomorphisms called the Hamiltonian flow.
A point x is said to be a nontrivial periodic orbit of φHt of period T > 0
if φHT (x) = x but φHt (x) 6= x for all t ∈ (0, T ). Let H be the set of functions
H : M → R with the following properties:

• H(x) ≥ 0 for all x ∈M ,
• there is an open subset of M on which H = 0;
• H is constant outside a compact subset of the interior of M ;
• H has no fast periodic orbits, i.e. every nontrivial periodic orbit of φHT

has period T ≥ 1.

Then we define the Hofer–Zehnder capacity cHZ as follows:

cHZ(U, ω) = sup
H∈H

(
sup
x∈M

H(x)
)
.

Thus cHZ measures the supremum of the size of the range of a function on
U whose derivative is constrained by the fact that it has no fast periodic
orbits.
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This function cHZ obviously satisfies the first three conditions for ca-
pacities. Moreover as λ increases the flow of λH moves faster so that the
periods of the periodic orbits decrease. Therefore in order to prove that a
set such as B2n has finite capacity one needs a mechanism to prove that pe-
riodic orbits for φHt must exist under suitable circumstances (for example,
if H = λK where K satisfies the first three conditions to be in H and λ
is sufficiently large.) In the original papers this mechanism involved subtle
arguments in variational analysis; however one can also prove such results
using J-holomorphic methods.

In 2-dimensions it is not hard to see that cHZ(U, ω) = area(U, ω). How-
ever, in dimensions four and above this is a very interesting invariant that
is very far from being understood. For example, we do not know cHZ for
the standard 4-torus R4/Z4.

Sequences of capacities: We now explain the properties of two increasing
sequences C = (c0 := 0, c1, c2, . . . ) of capacities that satisfy conditions (i)
and (iii) and have the following enhanced monotonicity property:

• (monotonicity) if there is a symplectic embedding (U, ω)
s
↪→ (U ′, ω′)

then C(U, ω) 4 C(U ′, ω′) in the sense that

ck(U, ω) ≤ ck(U ′, ω′) ∀ k ≥ 0.

Moreover in both cases c1 is (strongly) normalized.
(iii) Ekeland–Hofer capacities [11]. These form a sequence CEH :=
c1, c2, . . . o as above. Just as cHZ they are defined by variational methods,
picking out the actions7 of a sequence of “significant” periodic orbits —
found by mini-max methods — of the Hamiltonian flow of certain functions
H : R2n → R that are constant on the boundary ∂U . For example, denote
by E(a1, . . . , an) the 2n-dimensional ellipsoid8

E(a1, . . . , an) :=
{

(z1, . . . , zn ∈ Cn
∣∣∑π

|zi|2

ai
≤ 1
}
.

Then we have

CEH
(
B4(1)

)
= (0, 1, 1, 2, 2, 3, 3, 4, 4, . . . ),(2.1)

CEH
(
B2(1)×B2n−2(A)

)
= (0, 1, 2, 3, 4, 5, 6, 7, . . . ),

CEH
(
E(a1, . . . , an)

)
= Ord(m1a1, . . . ,mnan

∣∣m1, . . . ,mn ≥ 0),

where given a collection of nonnegative integers with repetitions, Ord lists
them (again with repetitions) in increasing order. Notice that for a generic
ellipsoid E(a1, . . . , an) with irrational ratios ai/aj the only closed orbits of
the Hamiltonian flow on its boundary are those in the n coordinate planes.
The orbit in the zi-plane is bounded by a circle with area ai and hence its

7The action of a periodic orbit γ is the ω0-area of a disk in R2n with boundary γ.
8One can show that for every quadratic form Q(x, y) the ellipsoid Q(x, y) ≤ 1 in R2n

can be written in this form after a suitable symplectic linear transformation.



SYMPLECTIC TOPOLOGY TODAY 17

m fold-cover has “action” mai. The EH capacities are simply this collection
of numbers, arranged in increasing order. For example,

(2.2) CEH
(
E(1, 5)

)
= (0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 10, . . . ).

(iv) Embedded contact homology (ECH)-capacities (Hutchings [24]).
This is another sequence CEH := (c0, c1, c2, . . . ) as above, that are defined
for 4-dimensional symplectic manifolds using a rather sophisticated gauge
theory. For subsets of R4 with contact type boundary (e.g. convex or star-
shaped sets) they are an invariant of the contact structure of its boundary,
and are defined using the homology of a chain complex whose generators are
finite unions of closed Reeb orbits (which in this case coincide with the closed
orbits of the characteristic foliation on the boundary; cf. Example 1.2). As
with Ekeland–Hofer capacities, ECH capacities measure the actions of cer-
tain (homologically) significant unions of these orbits. Because we are now
allowed to consider unions of orbits this invariant gives more information
about ellipsoids. In fact in this case the boundary operator in the ECH
chain complex vanishes so that the ECH capacities are just the actions of
all possible unions. Thus

(2.3) CECH
(
E(a1, . . . , an)

)
= Ord(

∑
miai

∣∣m1, . . . ,mn ≥ 0),

so that

CECH
(
B4(1)

)
= (0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, . . . ),(2.4)

CECH
(
E(1, 4)

)
= (0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, . . . ).

It is possible, but harder, to calculate the ECH capacities of products such
as B2(1)×B2n−2(A).

ECH capacities also behave well under disjoint union. Following Hutch-
ings, given two nondecreasing sequences

C = (c0 = 0, c1, . . . ), D = (d0 = 0, d1, . . . )

let us define their sum C#D by setting

(C#D)k := max
0≤i≤k

ci + dk−i.

Then

(2.5) CECH(X t Y ) = CECH(X)#CECH(Y ).

There are many other capacities, as well as other symplectically invariant
measurements that share some of the properties of capacities. (See [7] for
an overview.) Rather little is known about the behavior of an arbitrary
normalized capacity. For example, as far as we know currently it might be
true that all strongly normalized capacities agree on convex subsets of R2n.
Here is a somewhat more modest proposal, suggesting that the ball should
have the largest capacity among all convex sets with a given volume.
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Viterbo’s symplectic isoperimetric conjecture. All strongly normal-
ized capacities c satisfy the inequality

c(Σ)

Vol(Σ)1/n
≤ c(B)

Vol(B)1/n

for every compact convex set Σ ⊂ R2n with nonempty interior.
This is known to be true up to a constant factor that is independent of

dimension; [43, 3].

Hofer’s question about intermediate capacities; cf [7, §3.9] The notion
of capacity as defined above is an essentially 2-dimensional invariant since
it is finite on the product B2(1) × R2n−2. Hofer asked if there are inter-
mediate capacities, i.e. a symplectically invariant measurement that would
be infinite on B2d−2(1)×R2(n−d)+2 but finite on B2d(1)×R2(n−d) for some
d > 1. Alternatively, one could phrase this in terms of compact sets such as
polydisks:

P (a1, . . . , an) := B2(a1)× · · · ×B2(an), a1 ≤ a2 ≤ · · · ≤ an.

Thus, when d = 2 one might ask:
Is there a function f(a1, a2) that depends nontrivially on a2 and has the
property that

P (a1, . . . , an)
s
↪→ P (b1, . . . , bn) =⇒ f(a1, a2) ≤ f(b1, b2)?

In [20], Guth showed that when n ≥ 3 the answer to this second question is
“NO” by proving the following:

Theorem 2.4 (Guth). For each n there is a constant c(n) such that for all
ai, bj

P (a1, . . . , an)
s
↪→ P (b1, . . . , bn) ⇐⇒

{
c(n)a1 ≤ b1,
c(n)a1 . . . an ≤ b1 . . . bn.

In other words, up to the dimensional constant c(n), the only constraints
on embedding polydisks come from Gromov’s width and the volume.

Guth’s basic idea exploits the fact, first observed by Polterovich, that
the 2-torus9 does not squeeze. In other words, for all A > 0 there are

symplectic embeddings B2n(A)
s
↪→ T2(1) × R2n−2, where T2(1) denotes the

torus of area 1. For example, consider the composite symplectic embedding

B2n(A)
L−→ R2 × R2n−2 pr×id−→ R2/Z2 × R2n−2.

Here L is a linear map that distorts the ball so that its slices by the 2-planes
parallel to the z1-axis are disks of radius < 1

2 that therefore map injectively

9Here we are contrasting the 2-torus (or any higher genus surface) with the 2-sphere.
Gromov’s nonsqueezing theorem can also be stated as saying that there is no symplectic
embedding B2n(a)→ S2(A)× R2n−2 when a > A.
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under the projection pr : C 7→ C/Z. Guth refined this to construct an
embedding

B2n(A)
s
↪→

(
T2(1)rpt

)
× R2n−2.

He then used the fact that because T2(1)rpt immerses in B2(2) one can
embed its thickening B2(1)×

(
T2(1)rpt

)
into a polydisk such as P (3, 3) by

using the extra dimensions to separate out the two layers. By this means,
he constructs a composite embedding of the form

B2(1)× P (S, . . . , S)
s
↪→ B2(1)×

(
T2(1)rpt

)
× R2n−4 s

↪→ P (3, 3)× R2n−4.

Pelayo–Ngoc [40] refined this construction to deal with the noncompact sets
B2k×R2n−2k, thereby showing there are no intermediate capacities in Hofer’s
original sense.

Embedding balls, ellipsoids and polydisks. Guth’s theorem gives an
excellent qualitative idea for when one polydisk embeds into another. How-
ever we are far from being able to answer the following question even in
dimension 4.

Problem 2.5. Find necessary and sufficient conditions for embedding an
ellipsoid or polydisk into another ellipsoid or polydisk.

As we show below, in dimension 4 the question of when one ellipsoid em-
beds into another is completely solved. Similar methods work for ellipsoids
into polydisks; cf Frenkel–Müller [17]. However understanding the problem
when the domain is a polydisk is significantly harder. In dimensions 6 and
above we do not have a guess as to what the correct answer should be, even
for ellipsoids. (This is an interesting special case of Question 1.5.) One
easily check, using the above result of Guth, that the obvious analog of the
condition in Theorem 2.7 below is incorrect in general. However, judging
from recent work of Buse–Hind (cf. [4]) this analog might hold for suffi-
ciently “fat” ellipsoids, i.e. ones for which the ratio an/a1 is suitably small.
The most relevant invariants are the Ekeland–Hofer capacities CEH ,10 but,
as the following examples show, these are rather weak. We will first discuss
the case of polydisks, since rather little is known here, and then deal with
ellipsoids. Note that most examples mentioned below are in 4 dimensions.

The Ekeland-Hofer capacities give

CEH
(
P (1, 2)

)
= (0, 1, 2, 3, 4, 5, . . . , k, . . . ),

CEH
(
B4(a)

)
= (0, a, a, 2a, 2a, 3a, . . . , adk2e, . . . ).

Since volP (1, 2) = 2 = volB4(2), there is therefore no obstruction from CEH
and volume to the existence of an embedding P (1, 2)

s
↪→ B4(2). One can

check that the ECH capacities do no better. On the other hand, a recent
triumph with this particular problem is the following sharp bound.

10One can also define invariants using symplectic or contact homology, but it is not
clear whether one gets anything new this way.
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Theorem 2.6 (Hind–Lisi [22]). P (1, 2) embeds symplectically into the ball
B4(a) if and only if a ≥ 3.

Since P (1, 2) is a subset of B4(3), the condition is certainly sufficient.
The argument for necessity is very delicate, and proceeds by contradiction.
Assume that the closed polydisk P (1, 2) embeds into a ball B4(3 − ε) for
some ε > 0, and then compactify the ball11 to (CP 2, ωa), where ωa integrates
over the complex line to a < 3. The polydisk P (1, 2) has a “corner” S1(1)×
S1(2) = ∂B2(1)×∂B2(2) which is a Lagrangian torus T2. Pull the manifold
apart along this torus (“stretching the neck” in the language of gauge theory)
and look at what happens to the holomorphic curves. This is again an
essentially 4-dimensional result, since it uses special properties of J-curves
in 4-dimensional spaces.

It turns out that in 4 dimensions ellipsoids are easier to understand than
polydisks because they have smooth boundaries. In fact one can show that
ECH capacities give a sharp obstruction. This was conjectured by Hofer
when it became clear that the Ekeland–Hofer capacities did not give nec-
essary and sufficient conditions for an embedding. He was convinced that
the obstructions to embedding such a simple shape as an ellipsoid should
come from properties of the characteristic flow on the boundary: if it wasn’t
enough to know the actions of single, perhaps multiply covered, orbits, then
the next guess would be that one would get enough information from unions
of such orbits. In the case of ellipsoids, these are precisely the ECH ca-
pacities since the boundary operator in the ECH chain complex vanishes.
Indeed, recall from (2.4) that

(2.6) CECH
(
E(a, b)

)
= N (a, b),

where N (a, b) is the set of numbers {ma + nb | m,n ≥ 0} arranged in
increasing order, with repetitions. Further, C 4 D means that Ck ≤ Dk for
all k ≥ 0. The following result from McDuff [32] solves Hofer’s conjecture
for ellipsoids.

Theorem 2.7 (Hofer conjecture). For all 0 < a ≤ b, 0 < c ≤ d, we have

intE(a, b)
s
↪→ E(c, d) ⇐⇒ CECH

(
E(a, b)

)
4 CECH

(
E(c, d)

)
⇐⇒ N (a, b) 4 N (c, d).

11A nice fact in symplectic geometry is that the complement of a line in (CP 2, ωa)
can be identified with the open ball intB4(a); equivalently, one can construct (CP 2, ωa)
from the closed ball B4(a) by replacing its boundary 3-sphere ∂B4(a) by the 2-sphere
S2(a) = ∂B4(a)/S1 obtained by quotienting its boundary by the diagonal action of S1

(whose orbits are the leaves of the characteristic foliation). This is closely related to the
blow up construction discussed later.
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Example 2.8. Consider the problem of embedding intE(1, 5) into the small-
est possible ball B4(a). The EH capacities give the inequality

(0, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, . . . ) 4

(0, a, a, 2a, 2a, 3a, 3a, 4a, 4a, 5a, 5a, . . . )

which gives a ≥ 2. This does not even get the volume obstruction, which is
5 ≤
√
a. On the other hand the ECH capacities give

(0, 1, 2, 3, 4, 5, 5, 6, 6, 7, . . . ) 4

(0, a, a, 2a, 2a, 2a, 3a, 3a, 3a, 3a, . . . )

so that we need 5 ≤ 2a, i.e. a ≥ 5/2 (which is the correct answer). Note
also that the ECH capacities include information about volume: cf. [8].

The general theory of ECH capacities (finally established in Hutchings–
Taubes [25]) implies that N (a, b) 4 N (c, d) is a necessary condition for the
existence of an embedding. Therefore the main contribution in [32] was to
prove the sufficiency of this condition, i.e. actually to construct embeddings.
This is done by a rather indirect method that we will partially explain in
the next lecture.

Using the basic existence result for ball embeddings stated in Proposi-
tion 3.2 below, Hutchings [24] proved a similar result for embeddings of
unions of balls into a ball; see (2.5) for the capacities of such a union.

Theorem 2.9. For all ai, 1 ≤ i ≤ k, and 0 < c < d, we have⊔
i≥1

B(ai)
s
↪→ E(c, d) ⇐⇒ CECH

(⊔
i≥1

B(ai)
)
4 CECH

(
E(c, d)

)
We know much less about embedding balls and ellipsoids in higher di-

mensions. Here are two notable recent results.

Remark 2.10. (i) Buse and Hind [4] manage to prove packing stability

for balls B2n: namely for any N ≤ d(8 1
36)

n
2 e and any ε > 0 there is a

symplectic embedding of N disjoint equal balls into B2n that fully fill
the ball in the sense that the image has volume > (1− ε)VolB2n.

(ii) By improving Guth’s embedding, Hind–Kerman [21] show that if a > 3

then for each S > 0 there is S′ such that E(1, S, . . . , S)
s
↪→ E(a, a, S′, . . . , S′).

Further if a < 3 and S is sufficiently large there is no such embedding.
(Pelayo–Ngoc [41] sharpen this further, dealing with the case a = 3.)
Note that the best bound given by CEH is a = 2.
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3. Lecture 3: Embedding ellipsoids and Fibonacci numbers

In this third lecture I will try to explain the some parts of proof of Hofer’s
conjecture Theorem 2.7, restated below, and also describe why Fibonacci
numbers are relevant. Note that the methods of proof are ultimately based
in gauge theory and hence work only in dimension 4.

Recall that E(a, b) denotes the ellipsoid:

E(a, b) = {(x1, . . . , x4) ∈ R4 : π
x21+x

2
2

a + π
x23+x

2
4

b ≤ 1}.
Here is Hofer’s conjecture, where N (a, b) lists the numbers ma+nb,m, n ≥ 0
in increasing order with repetitions.

Theorem 3.1 (Hofer conjecture). For all 0 < a ≤ b, 0 < c ≤ d, we have

intE(a, b)
s
↪→ E(c, d) ⇐⇒ CECH

(
E(a, b)

)
4 CECH

(
E(c, d)

)
⇐⇒ N (a, b) 4 N (c, d).

In [24] Hutchings showed that CECH(a, b) = N (a, b), and (modulo the
cobordism argument in [25]) that the existence of an embedding implies
that N (a, b) 4 N (c, d). On the other hand, [30] develops12 a necessary and
sufficient condition for one 4-dimensional ellipsoid to embed in another by
the following two-step process:

• reduce the question to the question of embedding a certain disjoint
union of balls into the fixed ball B(d) = E(d, d) (where d ≥ c), and
then
• solve this ball embedding problem.

We will start with the second problem, since this was understood first.

3.1. Existence of ball embeddings. The question of when a given union
of k balls embeds into another ball had in fact been solved in the mid 1990s.
However the terms of its solution involved understanding which cohomology
classes in a k-fold blow-up13 of CP 2 are represented by symplectic forms,
and hence are rather different from the considerations in ECH. Blowups are
relevant here because in the symplectic world one can obtain a symplectic
form on the one point blow up of a manifold by cutting out the interior of
an embedded ball and then collapsing its boundary along the circle orbits
of the characteristic flow to an exceptional divisor. In 4 dimensions this
exceptional divisor is a symplectically embedded 2-sphere of self-intersection
−1. Because its Gromov invariant is nonzero, it can be controlled by the
theory of J-holomorphic curves. Conversely, given a form on the k-fold

12The proof of sufficiency had a gap that is now filled in [33, 34].
13In algebraic geometry the blow up at a point replaces that point by the set of all

complex lines through that point. Thus in complex dimension n the set of all these
lines forms a copy of CPn−1 called the exceptional divisor. In the symplectic world one
essentially replaces the interior of a ball by the set of all closed orbits of the characteristic
flow on tis boundary. As we explained in Lecture 1, each such orbit is the intersection
with the ball boundary of a complex line.
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blow up, one can remove k disjoint exceptional divisors inserting balls in
their stead; cf. [35, Chapter 7].

This has been a very fruitful way to understand both embedding problems
and some of the easier topological properties of symplectic 4-manifolds. In
particular, in order to show that the union of k balls of sizes w1, . . . , wm em-
beds in a symplectic manifold M it suffices to construct a suitable symplectic
form on the k-point blow up of M whose integral over the ith exceptional
divisor is wi. It is not known how to do this unless M has dimension 4 and
b+(M) = 1.14 In this case, one can embed k small balls are then increase
their size by “symplectic inflation”, a process that deforms the cohomology
class of the symplectic form ω by adding appropriate forms that are sup-
ported near codimension 2 symplectic submanifolds of M . In 4 dimensions
these submanifolds can be constructed as embedded J-holomorphic curves;
the condition b+(M) = 1 is needed in order to ensure that there are enough
such curves. (Some 4-manifolds (M,J, ω), such as certain tori, have no
closed J-holomorphic curves.) For further details and references, see [34].

We next explain a necessary and sufficient condition for a union of balls to
embed in a single ball. Given k write m := (m1, . . . ,mk) ∈ Nk, mi ≥ mi+1.
Let E := ∪k≥1Ek where

Ek : =
{

(d; m) : d2 + 1 =
∑
i

m2
i , 3d− 1 =

∑
i

mi, and (∗)
}
.

We shall refer to the first two conditions above as Diophantine conditions.
The third condition (∗) is more algebraic, requiring that tuple (d; m) can
be reduced to (0; 1) by repeated Cremona moves. Such a move takes (d,m)
to (d′; m′), where (d′; m′) is obtained by first transforming (d; m) to

(2d−m1 −m2 −m3; d−m2 −m3, d−m1 −m3, d−m1 −m2,m4,m5 . . . ),

and then reordering the new mi (discarding zeros) so that they do not in-
crease.

It was shown in Li–Li [27] (using Taubes–Seiberg–Witten theory for closed
curves) that Ek is precisely the set of homology classes represented by sym-
plectic exceptional divisors in the k-fold blow up of CP 2, where we interpret
(d,m) as the class dL −

∑
miEi.

15 It follows that the intersection number
(d; m) · (d′; m′) := dd′ −

∑
mim

′
i of any two elements in E is nonnegative.

Presumably this could be proved by some algebraic argument. However,
the only way I know to prove it is to use the “positivity of intersections” of
J-holomorphic curves, which follows from Taubes–Seiberg–Witten theory.

14This means that the intersection form on H2(M) diagonalizes to 1,−1,−1, . . . ,−1.
15Here we denote by L the class of a line [CP 1] and by Ei the class of the ith exceptional

divisor. Observe also that this is a place where symplectic geometry shows how flexible
it is in comparison with algebraic geometry. In algebraic (or complex) geometry, one
would want to describe the homology classes that can be represented by holomorphically
embedded exceptional divisors for a “generic” complex structure on the blow up. This
question is far from being understood.
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The following criterion was developed by McDuff–Polterovich and Biran
(for precise references, see [30]).

Proposition 3.2.

t
i≤k
B(wi)

s
↪→ B(µ) ⇐⇒ a < µ2 and µd ≥

∑
miwi, ∀(d; m) ∈ Ek.

Remark 3.3. In [24], Hutchings used ECH capacities to give a potentially
more stringent criterion for such a ball embedding, replacing the set Ek above
by the larger set consisting of all classes E = dL−

∑
miEi for which d2+3d ≥∑

m2
i +mi. However, [32, Proposition 3.2] gives a purely algebraic argument

showing that Hutchings’ criterion in fact agrees with the one above.

9 9 7

2 122 2
1

Figure 3.1. w(25/9) = (1, 1, 7/9, 2/9, 2/9, 2/9, 1/9, 1/9).

3.2. From ellipsoids to balls. We next explain which sets of balls cor-
respond to an ellipsoid. Given mutually prime integers p > q define their
weight expansion to be the ordered tuple with repetitions obtained by the
following process.

Definition 3.4. Let a = p/q ∈ Q written in lowest terms. The weight
expansion w(a) := (w1, . . . wk) of a ≥ 1 is defined recursively as follows:

• w1 = 1, and wn ≥ wn+1 > 0 for all n;

• if wi > wi+1 = · · · = wn (where we set w0 := a) then

wn+1 =

{
wn if wi+1 + · · ·+ wn+1 = (n− i+ 1)wi+1 ≤ wi
wi − (n− i)wi+1 otherwise;

• the sequence stops at wn if the above formula gives wn+1 = 0.

Thus the weights form a decreasing sequence of numbers, whose multi-
plicities give the coefficients of continued fraction representation of a. Here
are some examples.

Example 3.5. w(8/5) = (1, 3/5, 2/5, 1/5, 1/5) with multiplicities 1, 1, 1, 2.
This corresponds to the continued fraction expansion 8/5 = [1; 1, 1, 2] i.e.

8

5
= 1 +

1

1 + 1
1+ 1

2

.

Similarly in Figure 3.1 the multpliciites for 25/9 are 2, 1, 3, 2, and we have

25

9
= 2 +

1

1 + 1
3+ 1

2

.
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Cutting up ellipsoids into balls
Here is the main result that relates ball embeddings to the problem of

embedding ellipsoids.

Proposition 3.6. For each rational a = p/q ≥ 1, E(1, a) embeds symplec-
tically in the interior of B4(µ) if and only if the disjoint union of balls

t
i≤M

B(wi)

embeds symplectically in the interior of B4(µ), where w(a) = (w1, . . . , wM )
is the weight expansion of a.

The “only if” part of the above statement is easy if we use toric models.

Describing embeddings by toric models:
Symplectic toric manifolds are 2n-manifolds with a Hamiltonian action of

an n-torus (S1)n. This means that there are n functions Hi : M → R whose
Hamiltonian flows commute. These fit together to form a map Φ : M → Rn,
called the moment map. It turns out that the moment image Φ(M) is
always a convex polytope. Moreover, a celebrated theorem of Delzant says
that M is completely determined by this polytope Φ(M), modulo transla-
tions and linear changes of basis in Rn by matrices in GL(n,Z). (These basis
changes correspond to changing the chosen basic for the torus T2 = S1×S1.)
Thus the symmetry group here is Aff(GL(n,Z)), the affine general linear
group over Z.

As we saw in Lecture 1, the rotation action of S1 on C is generated by
the function z 7→ π|z|2. Similarly, the action of (S1)2 on C2 is generated
by the map Φ : (z1, z2) 7→ (π|z1|2, π|z2|2). Therefore the image Φ(E(1, a))
is the triangle with vertices (0, 0), (0, 1), (a, 0). One should be a little
careful about what happens to the boundary, but let’s ignore this point.
Lisa Traynor showed how how to embed the interior of the ball B4(1) into
Φ−1(T0) where T0 ⊂ R2 is an open triangle with vertices (0, 0), (0, 1), (1, 0).
Any triangle equivalent under the action of Aff(GL(n,Z)) to a rescaling of
this one is called a standard triangle.

Thus we can obtain full fillings16 of B4(1) by d2 equal balls by cutting a
standard triangle into d2 standard pieces as in Figure 3.2.

Figure 3.2. Embedding d2 standard triangles into a triangle
of size 1.

16There are several slightly different notions of full filling. But it suffices here to require
that the volume of the domain (which is a disjoint union of open sets) equals the volume
of the target.
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5);(3

3

1 1

2

Figure 3.3. Cutting triangles into standard triangles as
compared to cutting a rectangle into squares. Reading the
pictures right to left, one sees that the triangle decomposi-
tion is structurally the same as that giving the weights for
5/3: remove the top right vertex of the rectangle and then
collapse its top to a point on the y axis and its right side to
a point in the x axis.

The geometric definition of a weight expansion involves cutting up a rec-
tangle into squares. But, by Figure 3.3, one can equally well interpret it in
terms of cutting up an arbitrary triangle into standard triangles of the ap-
propriate sizes. Thus if the weight expansion of E(1, a) is w = (w1, . . . , wM ),
one can directly embed M standard triangles of sizes wi into Φ(E(1, a)), and
hence can lift this to an embedding of tiB4(wi) into E(1, a). As we explain
in more detail in [30], it also corresponds to a joint resolution of the two
singularities of the toric variety corresponding to the complement of the tri-
angle in the positive quadrant. This proves one direction of Proposition 3.6.

The other direction is explained in the simple case of intE(1, 4)
s
↪→ B4(2) in

[30]. In general the proof uses relative inflation techniques developed in [34].

3.3. Calculating the capacity function for ellipsoids into balls. The
connection of the ellipsoidal embedding problem with continued fractions
and Fibonacci numbers comes both when when one cuts an ellipsoid up
into balls, and when one calculates what the numerical conditions N (a, b) 4
N (c, d) actually mean in practice.17

I will now explain this second point.
Together with Schlenk I calculated the following embedding capacity

function in [37]:

c(a) := inf{µ : E(1, a)
s
↪→ B(µ)}.

Note that c(a) ≥
√
a because volE(1, a) = volB(

√
a). Clearly the function

c is nondecreasing. Moreover, because E(λa, 1) ⊂ E(λ, λa) =: λ(E(1, a))
for λ ≥ 1, it is easy to see that c(λa) ≤ λc(a); in other words the function

a 7→ cECH(a)
a is nonincreasing. We call this the scaling property.

17The fact that the sequence N (a, b) encodes a lot of information about the continued
fraction expansion of a/b is not surprising when one sees how they arise in ECH picture.
Here they are closely related to the ECH index which involves counting lattice points in
triangles.
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Figure 3.4. The approximate graph of c(a). Here b := 17
6 .

Theorem 3.7 (McDuff–Schlenk). Let τ = 1+
√
5

2 . The graph of c(a) divides
into three parts:

• if 1 ≤ a < τ4 the graph is piecewise linear – an infinite Fibonacci staircase
converging to (τ4, τ2);

• τ4 ≤ a < 8 1
36 is a transitional region; c(a) =

√
a except on a finite number

of short intervals; further c(a) = a+1
3 for τ4 ≤ a ≤ 7;

• if a ≥ 8 1
36 =

(
17
6

)
2 then c(a) =

√
a.

Description of the Fibonacci stairs: Let

g1 = 1, g2 = 2, g3 = 5, g4 = 13, g5 = 34, g6 = 89, . . . ,

be the odd terms in the sequence of Fibonacci numbers; set

an :=
(
gn+1/gn

)
2, bn := gn+2/gn

so that an < bn < an+1, and an → τ4. Here we set g0 := 1 for convenience,
so that a0 = 1, b0 = 2. Then the claim is that

c(x) = x/
√
an on [an, bn], and c(x) =

√
an+1 on [bn, an+1].

Since bn√
an

=
√
an+1 this gives a continuous graph on the interval 1 ≤ a < τ4.

For example,

c(2) = c(b0) =
√
a1 = 2 = c(4), c(5) = c(b1) = 5

2 = c(61
4).

It is not hard to check that there is a unique continuous function c on
[1, τ4] that satisfies the scaling property and has the above values at the
points an, bn. Hence, if an alternate way could be found to calculate these
values, one would know c on [1, τ4]. This is precisely the approach used by
Christofaro–Gardiner and Kleinman in [9]. They recently found a purely
combinatorial calculation of c(an), c(bn) using the relation (explained in [37,
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9]) between the numbers N (a, b) and the problem of counting lattice points
in triangles.18

Fibonacci numbers came up in the calculations in [37] for a completely
different, and rather unexpected reason that we now explain.

Notice first that Propositions 3.2 and 3.6 have the following immediate
corollary.

Lemma 3.8. c(a) = sup
{√

a, sup
(d,m)∈Ek

∑
miwi(a)
d

}
, where Ek is the set of

classes in the k fold blow up CP 2 represented by exceptional spheres.

Proof. This holds because we need the inner product

(µ,w(a)) · (d,m) = µd−
∑

aimi ≥ 0, ∀(d,m) ∈ E ,

where the inner product has type (1,−k). Thus we need µ ≥
∑
miwi(a)
d for

all (d,m) ∈ E . �

Example 3.9. E4 has the single element (1; 1, 1) (corresponding to L −
E1 − E2) and w(4) = (1, 1, 1, 1) = (1×4). Therefore c(4) = 2. However E5
also contains (2; 1, . . . , 1) = (2; 1×5) corresponding to 2L −

∑5
i=1Ei. Thus

c(5) = sup{
√

5, 2, 5/2} = 5/2. Compare with Example 2.8

Therefore, the calculation in [37] of the capacity function c is based on
analyzing which elements E ∈ E give obstructions. We need to find classes

E ∈ Ek such that
∑
miwi(a)
d is large when (d,m) is arbitrary and w is the

weight expansion of a. In particular, the existence of the Fibonacci staircase
in Theorem 3.7 is based on the somewhat surprising discovery that there

are elements of E ⊂ H2(CP 2#kCP 2 related to the weight expansions of the
numbers a = gn+2

gn
that give the corners of the steps.19 More precisely, we

have:

Proposition 3.10. Denote the odd Fibonacci numbers by gn, n ≥ 1, as
above, and define an := (gn+1/gn)2 and bn := gn+2/gn. Then:
(i) E(bn) :=

(
gn+1; gnw(bn)

)
∈ E . Moreover, numbers of the form bn are the

unique numbers pn/qn for which there is some d with this property, i.e. so
that

(
d; qnw(pn/qn)

)
∈ E. (ii) E(an) :=

(
gngn+1; g

2
n(w(an)), 1

)
∈ E .

Idea of proof. It is not hard to show that the elements E(an) and E(bn)
satisfy the Diophantine conditions needed to be in E . Moreover, there is
an easy inductive proof that E(bn) satisfies the third condition since E(bn)
reduces to E(bn−2) under five Cremona moves. However, the corresponding
behavior of E(an) is much more complicated. �

18In fact it turns out that triangles whose vertices are the rational points
(0, 0), (

gn+1

gn
, 0), and (0, gn

gn+1
) are very interesting from this point of view, because they

provide new examples of period collapse for Erhart polynomials.
19Since the structure of the latticeH2(CP 2#kCP 2 when k > 9 is still rather mysterious,

this fact might have relevance to other problems. Note also, that in contrast to our method,

in [9] it was the numbers a =
( gn+1

gn

)2
at the inside of the steps that were interesting.
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In fact, as we pointed out in Remark 3.3 one does not in fact need to check
that E satisfies (∗) in order to use it to bound c(a). On the other hand,
the calculation of c(a) for a ∈ (τ4, 7] is very delicate, relying on a study of
auxiliary elements of E , ones that do not themselves provide obstructions
but which prevent the existence of other obstructions because of positivity
of intersections, i.e. the fact that E · E′ ≥ 0 for E,E′ ∈ E . The situation
becomes easier to analyze as a − τ4 gets larger. Indeed, when a ≥ (176 )2

a fairly simple analytic argument shows that no elements of E can give
obstructions more stringent than the volume obstruction.
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