Jeremy Avigad
Carnegie Mellon University

ASL Invited Address
The promise of formal mathematics
Friday January 7, 2022, 10:00 a.m.10:50 a.m.

Omer BenNeria
Einstein Institute of Mathematics, Jerusalem

ASL Invited Address
Diamonds compactness and ultrafilters in set theory
Friday January 7, 2022, 2:00 p.m.2:50 p.m.
Guessing and compactness principles are two of the most fertile tools in set theory, which play a central role in the construction of many infinite objects (e.g., groups, graphs, topological spaces, etc.) with various desirable properties. The goal of this talk is to discuss a long ongoing research in set theory which studies the interaction between the two.
The most wellknown guessing principle is the Diamond principle, which was introduced by Ronald Jensen in the 1970s in his seminal study of the constructible universe. Compactness principles in set theory can be viewed as strong extensions to the compactness theorem in firstorder logic, and are closely related to large cardinal axioms and the existence of various types of ultrafilters.
It is wellknown that certain compactness principles imply the existence of diamond sequences, however, the extent to which reflection principles assert the existence of a diamond sequence remains quite mysterious.
After introducing the two principles, we will discuss the history of this problem and new results from joint work with Jing Zhang.

Robert Q. Berry, III
University of Virginia

NAM CoxTalbot Address
Interest Convergence: An analytical viewpoint for examining how power dictates policies and reforms in mathematics
Friday January 7, 2022, 7:45 p.m.8:35 p.m.
This CoxTalbot talk uses a hybrid policy analysiscritical race theory lens informed largely by legal scholars like Derrick Bell to make the case that policies and reforms in mathematics education failed to address the needs of historically excluded learners. Rather, these policies and reforms are often designed and enacted to protect those in power's economic, technological, and social interests. This talk offers contrasting narratives between policy intentions and policy enactment, highlighting how the language of mathematics policies positions historically excluded learners as deficient within their cultures and communities. Finally, this talk considers features necessary in mathematics policies and reform documents when discussing the historically excluded learners.

Peter Cholak
University of Notre Dame

ASL Invited Address
Ramsey like theorems on the rationals
Saturday January 8, 2022, 10:00 a.m.10:50 a.m.

KarlDieter Crisman
Gordon College

ACMS Guest Speaker
TBA
Thursday January 6, 2022, 7:00 p.m.  7:20 p.m.

Marianna Csörnyei
University of Chicago

AWMAMS Noether Lecture
The Kakeya Needle Problem for rectifiable sets
Thursday January 6, 2022, 10:05 a.m.10:55 a.m.

Qiang Du
Columbia University

SIAM Invited Address
Analysis and applications of nonlocal models
Thursday January 6, 2022, 11:10 a.m.12:00 p.m.
Nonlocality has become increasingly noticeable in nature. The modeling and simulation of its presence and impact motivate new development of mathematical theory. In this lecture, we focus on nonlocal models with a finite horizon of interactions, and illustrate their roles in the understanding of various phenomena involving anomalies, singularities and other effects due to nonlocal interactions. We also present some recent analytical studies concerning nonlocal operators and nonlocal function spaces. The theoretical advances are making nonlocal modeling and simulations more reliable, effective and robust for applications ranging from classical mechanics to traffic flows of autonomous and connected vehicles.

Elamin Elbasha
Merck & Co., Inc.

Current Events Bulletin Session  Lecture IV
Supported by a generous donation from Salilesh Mukhopadhyay, in honor of Satyendra Nath Bose, Mahadev Datta, and Pranab K. Sarkar, to bring appreciation for mathematics to a broader audience
Mathematics and the quest for vaccinationinduced herd immunity threshold
Friday January 7, 2022, 5:00 p.m.6:00 p.m.
Mathematics plays a major role in providing realistic insights into the spread and control of infectious diseases, dating back to the pioneering works of the likes of Daniel Bernoulli (on smallpox immunization modeling) in the 1870s. For example, mathematics provides answers to pertinent questions relating to the control and mitigation of vaccinepreventable diseases such as: what is the minimum fraction of the unvaccinated susceptible population that needs to be vaccinated to achieve disease elimination (in a local setting) or end pandemics (globally)? This minimum fraction is called herd immunity threshold. In this talk, I will discuss the mathematical theories and modeling methodologies associated with the derivation of vaccineinduced herd immunity thresholds for eliminating or eradicating infections, highlight the properties and assumptions behind the derived thresholds, discuss common misconceptions, and outline areas for future research. Examples of a few vaccinepreventable diseases, such as the COVID19 pandemic, will be used for illustrative purposes.

Nicolas Fillion
Simon Fraser University

POM SIGMAA Guest Speaker
Trust but Verify: What Can We Know About the Reliability of a ComputerGenerated Result?
Friday January 7, 2022, 5:30 p.m.6:30 p.m.
Since the Second World War, science has become increasingly reliant on the use of computers to perform mathematical work. Today, computers have justifiably become a trusted ally of scientists and mathematicians. At the same time, there is a panoply of cases in which computers generate demonstrably incorrect results; and there is currently no reason to expect that this situation will change. This prompts the careful user to verify computergenerated results, but it is clear that we are often not in a position to review the work of computers as we would traditionally review a putative derivation or calculation. In this sense, computational processes are epistemically opaque.
Since Humphreys introduced the phrase `epistemic opacity' in the philosophical literature in 2004, the concept of opacity has been developed along different lines; furthermore, many incompatible claims have been advancedbe they about what opacity is or about whether we should worry about itleaving this field of the philosophy of computing in a state of confusion. In this paper, we propose a framework that disentangles three core questions (1. What kinds of epistemic opacity are there in scientific computing? 2. Should we worry about epistemic opacity? 3. Should we seek greater transparency whenever possible?) and systematically survey how their answers interrelate.

Elena Giorgi
Columbia University

Current Events Bulletin Session  Lecture II
The stability of black holes with matter
Friday January 7, 2022, 3:00 p.m.4:00 p.m.
Black holes are fundamental objects in our understanding of the universe. The mathematics behind them has surprising geometric properties, and their dynamics is governed by hyperbolic PDEs. A basic question one may ask is whether these solutions to the Einstein equation are stable under small perturbations, which is a typical requirement to be physically meaningful. We will see how the dispersion of gravitational waves plays a key role in the stability problem, illustrating the main conjectures and some recent theorems regarding the evolution of black holes and their interaction with matter fields.

Anna Gilbert
Yale University

von Neumann Lecture
Title TBA
Saturday January 8, 2022, 9:00 a.m.9:50 a.m.

Edray Herber Goins
Pomona College

MAA Project NExT Lecture on Teaching and Learning
Addressing AntiBlack Racism in Our Departments
Thursday January 6, 2022, 11:10 a.m.12:00 p.m.
In April 2021, the PBS Newshour ran a story with the headline “Even as colleges pledge to improve, share of engineering graduates who are Black declines”. Indeed, there is a dearth of Black students in our mathematics classrooms. A 2018 study by the Pew Research Center found that Black students earned just 7 percent of STEM bachelor’s degrees. Unfortunately, this is an issue for our faculty as well. A 2017 report in Inside Higher Ed states that there has been an increase over time in the diversity of senior and junior faculty members in the STEM fields — except black faculty. A New York Times article, titled “For a Black Mathematician, What It’s Like to Be the ‘Only One’”, quoted that there are just a dozen black mathematicians among nearly 2,000 tenured faculty members in the nation’s top 50 math departments.
What can we as faculty members do to make our mathematics departments more welcoming and diverse for Black students and faculty alike? These are daunting problems, and many with an interest in presenting solutions do not even have tenure! In this interactive presentation, we present some practices that even tenuretrack faculty can engage in to showcase how #BlackLivesMatter — from increasing the number of pathways for majors, to building community by conducting research with students, and having hard conversations within hiring committees.

Monica Jackson
American University

NAM ClaytorWoodard Lecture
Spatial Data Analysis for Public Health Data
Thursday January 6, 2022, 2:40 p.m.3:30 p.m.
Spatial data analysis concerns data that are correlated by location, and relies upon the assumption that objects closer together in space (e.g. geographical location) will most likely have similar responses. This talk provides an overview of graphical and quantitative methods I developed for the analysis of spatial data. Emphasis is on lattice data (also known as areal data or aggregated data) however modeling of geostatistical data and point patterns will be discussed. I will apply these methods to public health data with applications to cancer trends, maternal mortality in the Dominican republic, and COVID19 disease surveillance.

Franziska Jahnke
University of Münster

ASL Invited Address
Decidability and definability in unramified henselian valued fields
Friday January 8, 2022, 1:00 p.m.1:50 p.m.
Unramified and finitely ramified henselian valued fields are central to studying modeltheoretic phenomena in mixed characteristic. Decidability and definability in unramified henselian valued fields with perfect residue field are well understood, starting with the seminal work of Ax, Kochen, and Ershov. In this talk, we present recent developments in unramified henselian valued fields with imperfect residue field, and also comment on what changes in the case of finite ramification. Joint work with Sylvy Anscombe and Philip Dittmann.

Tyler J. Jarvis
Brigham Young University

AMS Lecture on Education
Supported by a generous donation from JMM partner COMAP, Inc. in memory of Bob Moses
Restoring confidence in the value of mathematics
Saturday January 8, 2022, 11:10 a.m.12:00 p.m.
Ten years ago a group of my department’s math majors told my colleague, Jeff Humpherys, and me, “We majored in math because we like it, but we know it won’t get us a job unless we want to teach.” That comment motivated us to create an entirely new program in applied and computational mathematics (ACME) at BYU—a program to teach students mathematics that is deep and beautiful and that employers are also eager to pay for, mathematics that students can use on the job to solve the problems of the 21st century.
Since we started the ACME program eight years ago, the number of majors in our department has almost doubled, ACME students account for twothirds of all our majors, and resources have flowed to our department. Our graduates’ starting salaries are substantially higher, and many of them are turning those big offers down to go to top graduate programs, where they are flourishing. Our alumni are fiercely loyal to ACME and eager to help the students that follow them.
In this presentation I’ll talk about some of the problems we had to overcome to get ACME started, how we made ACME successful, and what we have learned along the way to help those of you wanting to do something similar for your students.

Autumn Kent
University of Wisconsin  Madison

Spectra Lavender Lecture
Families
Thursday January 6, 2022, 11:05 a.m.11:55 a.m.
We'll talk about the ubiquity of family in lowdimensional topology and geometry.

Daniel Reuben Krashen
Rutgers University

AMS Invited Address
Title TBA
Wednesday January 5, 2022, 10:05 a.m.10:50 a.m.

Dave Kung
Charles A. Dana Center, The University of Texas at Austin

MAASIAMAMS HrabowskiGatesTapiaMcBay Lecture
Why the Math Community Struggles with Equity & Diversity  and Why There’s Reason for Hope
Friday January 8, 2022, 9:00 a.m.9:50 a.m.

Xihong Lin
Harvard University, Broad Institute of MIT and Harvard

ASA Committee of Presidents of Statistical Societies Lecture
Learning from COVID19 Data on Transmission, Health Outcomes, Interventions and Vaccination
Thursday January 6, 2022, 3:50 p.m.4:40 p.m.

Dan Margalit
Georgia Institute of Technology

AMS Maryam Mirzakhani Lecture
Mixing surfaces, algebra, and geometry
Thursday January 6, 2022, 9:00 a.m.9:50 a.m.
Taffy pullers, lab stirrers, and paint mixers are complicated dynamical systems. To any such system we can ascribe a real number, called the entropy, which describes the amount of mixing being achieved. Which real numbers arise, and what do they say about the dynamics of the system? We will explore this question through the lens of topological surfaces, making unexpected connections to algebra and number theory. Our tour will take us from the work of Max Dehn and Jakob Nielsen a century ago, to the revelations of the Fields medalist William Thurston in the 1970s, to the breakthroughs of Fields medalist Maryam Mirzakhani in the 21st century.

Sandra Müller
Technical University of Vienna

ASL Invited Address
Lower Bounds in Set Theory
Saturday January 8, 2022, 1:00 p.m.1:50 p.m.
Computing the large cardinal strength of a given statement is one of the key research directions in set theory. Fruitful tools to tackle such questions are given by inner model theory. The study of inner models was initiated by G\”odel's analysis of the constructible universe $L$. Later, it was extended to canonical inner models with large cardinals, e.g. measurable cardinals, strong cardinals or Woodin cardinals, which were introduced and studied by Jensen, Mitchell, Steel, Woodin, Sargsyan, and others.
We will outline two recent applications where inner model theory is used to obtain lower bounds in large cardinal strength for statements that do not involve inner models. The first result, joint with Y. Hayut, involves combinatorics of infinite trees and the perfect subtree property for weakly compact cardinals $\kappa$. The second result studies the strength of a model of determinacy in which all sets of reals are universally Baire. Sargsyan conjectured that the existence of such a model is as strong as the existence of a cardinal that is both a limit of Woodin cardinals and a limit of strong cardinals. Larson, Sargsyan and Wilson showed that this would be optimal via a generalization of Woodin's derived model construction. We will discuss a new translation procedure for hybrid mice extending work of Steel, Zhu and Sargsyan and use this to prove Sargsyan's conjecture.

Gaston Mandata N'Guerekata
Morgan State University

AMS Invited Address
An invitation to periodicity
Wednesday January 5, 2022, 2:15 p.m.3:05 p.m.
Periodicity is everywhere, every day. Considering some periodic phenomena, we will revisit the mathematical concept of periodicity and its recent generalizations up to almost automorphy. We will study their applications to some differential equations. An elementary proof of the celebrated Massera Theorem will be presented. We will also show that an almost periodic second order semilinear elliptic equation may not have almost periodic solutions, but many almost automorphic solutions in the envelop of the equation. An application to almost periodically forced pendulum will be given.

Hee Oh
Yale University

AMS Erdős Lecture for Students
Title TBA
Wednesday January 5, 2022, 11:10 a.m.12:00 p.m.

Jill Pipher
Brown University

AMS Retiring Presidential Address
Regularity of Solutions to Elliptic Operators and Elliptic Systems
Wednesday January 6, 2022, 3:20 p.m.4:10 p.m.
The celebrated De GiorgiNashMoser theory, developed in the middle of the last century, showed that a structural condition on the matrix of coefficients of a second order PDE implied the Holder continuous regularity of its solutions, even for rough (measurable, bounded) coefficients. The structural condition is called ellipticity. This theory had a big impact for the study of nonlinear equations and opened the door to a better understanding of how to quantify the connection between regularity (smoothness) of the coefficients and that of solutions. In this talk, we will review progress towards that understanding, and introduce a recently discovered structural condition, generalizing ellipticity, that has sparked new results for complex coefficient operators and real/complex systems.

Heather Price
North Seattle College

SIGMAA EM Guest Speaker
Climate Justice Integrated Learning in STEM
Thursday January 6, 2022, 7:30 p.m.8:20 p.m.
Our students learn about climate change from the news and in many of our classes, and they are hungry for what to do with that knowledge and how to connect it within their careers and communities. Climate touches and belongs in every subject we teach, from Humanities, business, and health sciences, to all areas of STEM, including mathematics and statistics. Dr. Price will share her work leading the Climate Justice Project at North Seattle College. This initiative seeks to build bridges between disciplines to help faculty incorporate climate justice and civic engagement into their core curriculum, in ways that empower students and encourage student retention and success. In today’s talk Dr. Price will share ideas of how and why to integrate climate justice and civic engagement into STEM, with examples from mathematics courses.

Kavita Ramanan
Brown University

AAASAMS Invited Address
Title TBA
Friday January 7, 2022, 11:10 a.m.12:00 p.m.

Anup Rao
University of Washington

Current Events Bulletin Session  Lecture III
Sunflowers: from soil to oil
Friday January 7, 2022, 4:00 p.m.5:00 p.m.
A sunflower is a collection of sets whose pairwise intersections are all the same. Erdos and Rado showed that any large family of sets of size k must contain a large sunflower, and made a conjecture about the dependence of the size of sunflower on the size of the family of sets. Very recently, Alweiss, Lovett, Wu and Zhang made significant progress towards proving their conjecture. I discuss the key ideas involved in this line of work, and show how this problem is connected to a diverse array of applications in mathematics and computer science.

Adrian Rice
RandolphMacon College

HOM SIGMAA Speaker
Beyond the strength of a woman's physical power: Mathematics, Machines, and the Mind of Ada Lovelace
Wednesday January 5, 2022, 5:00 p.m.5:50 p.m.
Ada Lovelace is widely regarded as an early pioneer of computer science, due to an 1843 paper about Charles Babbage's Analytical Engine, which, had it been built, would have been a generalpurpose computer. Her paper contains an account of the principles of the machine, along with a table often described as 'the first computer program'. However, over the years there has been considerable disagreement among scholars as to her mathematical proficiency, with opinions ranging from 'genius' to 'charlatan'. This talk presents an analysis of Lovelace's extant mathematical writings and will attempt to convey a more nuanced assessment of her mathematical abilities than has hitherto been the case.

Tom Scanlon
University of California, Berkeley

Current Events Bulletin Session  Lecture I
Tame Geometry for Hodge theory
Friday January 7, 2022, 2:00 p.m.3:00 p.m.
Hodge theory brings the methods of complex analysis and differential geometry to algebraic geometry. As such, highly transcendental constructions, such as those of period mappings produced through integration, are used to study problems of an algebraic nature. Some fundamental conjectures in the subject, most notably the Hodge Conjecture itself, predict that certain objects defined using these transcendental methods are in fact algebraic. In 1994, Cattani, Deligne, and Kaplan proved one of the strongest theorems in this vein on the algebraicity of the socalled Hodge locus.
In a paper published in 2020, Bakker, Klingler, and Tsimerman gave a simplified proof of the CattaniDeligneKaplan theorem by showing that the period mappings appearing in that theorem are definable in an ominimal structure. Here, “definable” carries its precise meaning in the sense of firstorder logic and ominimality is a technical, tameness condition on structures (again in the sense of firstorder logic) on the real numbers. The BakkerKlinglerTsimerman theorem and a string of subsequent results tying ominimal to Hodge theory exhibit once more that ominimality may serve as tame geometry.
In this lecture, I will discuss ominimality in concrete terms, recall some of the basics of Hodge theory, state the BakkerKlinglerTsimerman theorem in a simplified form, and explain the relevance of ominimality to this theorem and its generalizations.

Lynn Scow
California State San Bernardino

ASL Invited Address
Semiretractions and the Ramsey Property
Friday January 7, 2022, 9:00 a.m.9:50 a.m.
Say that an injection $f : A \to B$ is quantifierfree typerespecting infinite tuples from $A$ that share the same quantifierfree type in $A$ are mapped by $f$ to tuples in $B$ that share the same quantifierfree type in $B$. For structures $A$ and $B$ in possibly different languages we say that $A$ is a semiretraction of $B$ if there are quantifierfree typerespecting injections $g: A \to B$ and $f: B \to A$ such that $f \circ g: A \to A$ is an embedding. Given finite structures $A\subseteq C$, define $\left(\begin{array}{c}C\\A\end{array}\right)$ to be all substructures of $C$ isomorphic to $A$. We say that an age $K$ of finite structures has the Ramsey property $(RP)$ if for all $A: B\in K$ and integers $k\geq 2$ there exists $C\in K$ such that for any $k$coloring $c : \left(\begin{array}{c}C\\A\end{array}\right)\to k$, there is $B'\in\left(\begin{array}{c}C\\B\end{array}\right)$ such that for any $A', A''\in\left(\begin{array}{c}B\\A\end{array}\right), c(A')=c(A'')$. In [1], it was shown that if $A$ and $B$ are locally finite ordered structures, then if the age of $B$ has RP, the age of $A$ has RP. In this talk we will present some improvements on this result and comment on the connection to categorical notions in Ramsey theory.
[1] L. Scow, Ramsey transfer to semiretractions, Annals of Pure and Applied Logic, vol. 172 (2021), no. 3, Paper no. 102891,18.

Karen Smith
University of Michigan

AMS Colloquium Lecture I
Title TBA
Wednesday January 5, 2022, 1:00 p.m.1:50 p.m.
AMS Colloquium Lecture II
Title TBA
Thursday January 6, 2022, 1:00 p.m.1:50 p.m.
AMS Colloquium Lecture III
Title TBA
Friday January 7, 2022, 1:00 p.m.1:50 p.m.

Eitan Tadmor
University of Maryland

AMS Josiah Willard Gibbs Lecture
Emergent Behavior in Collective Dynamics
Thursday January 6, 2022, 5:00 p.m.6:00 p.m.
A fascinating aspect of collective dynamics is selforganization, where small scale interactions lead to the emergence of highorder structures with largerscale patterns. It is a characteristic feature in collective dynamics of “social particles” which actively probe the environment and aggregate into various forms of clusters. In different contexts these take the form of flocks, swarms, consensus, synchronized states etc. In this talk I will survey recent mathematical developments in collective dynamics, starting with the influential works of Reynolds, Krause, Vicsek and Cucker & Smale.
The dynamics is governed by different protocols of pairwise interactions, quantified in terms of proper communication kernels. Collisions are avoided. A main question of interest is how different classes of such kernels affect the largetime largecrowd dynamics. We will ask how shortrange interactions can affect the emergence of largescale patterns, what is the role of repulsion away thermal equilibrium, and how graph connectivity dictates the emergent behavior of multispecies dynamics.

Pauline van den Driessche
University of Victoria, B.C., Canada

ILAS Invited Address
Sign Patterns Meet Dynamical Systems
Wednesday January 5, 2022, 9:00 a.m.9:50 a.m.
Biological systems, including those for predatorprey and disease transmission models, often give rise to systems of first order ordinary differential equations (ODEs). Linearization then yields a system $\dot x= Ax$ where $A$ is the community matrix. By contrast, mechanical and electrical systems often give rise to a second order ODE system $\"{x}= A\dot{x}+ Bx$, which is equivalent to a first order system with coefficient matrix $C =\begin{bmatrix}A&B\\I&0\end{bmatrix}$. In cases for which the signs rather than the magnitudes of matrix entries are known, the matrices become sign patterns with entries $\in\{+,,0\}$. What can be determined about the behavior of a dynamical system governed by such a sign pattern matrix? This general question is addressed by developing results on sign patterns. Some answers in special cases are given that determine stability and inertia properties, which are important for the underlying dynamical systems.
Joint work with Adam H. Berliner, Minerva Catral, D.D. Olesky.

Erik Walsberg
University of California Irvine

ASL Invited Address
Model theory of large fields
Saturday January 8, 2022, 9:00 a.m.9:50 a.m.

Lauren K. Williams
Harvard University

MAAAMSSIAM Gerald and Judith Porter Public Lecture
Title TBA
Saturday January 8, 2022, 3:00 p.m.4:00 p.m.

Talithia Williams
Harvey Mudd College

JPBM Communications Award Lecture
Title TBD
Saturday January 8, 2022, 1:30 p.m.2:30 p.m.
